Модель машинного обучения для распознавания объектов по фотографиям
Теоритические аспекты и модели машинного обучения. Получение и интерпретация визуальной информации. Цели и задачи идентификации объектов по фотографиям. Использование искусственной нейронной сети Keras для распознавания ос и пчел от других насекомых.
Подобные документы
Характеристика методов компьютерной реализации геометрических мер близости, их применение для принятия решений в детерминированных системах распознавания. Использование формулы для вычисления расстояний в программировании, формирование массива в системе.
лабораторная работа, добавлен 02.12.2014Рассматриваются алгоритмы обучения нейронной сети: градиентный спуск с постоянным шагом и метод сопряженных градиентов (алгоритм Флетчера-Ривса). Расчет значения минимизируемой целевой функции ошибки полученной на тестовой выборке после обучения.
статья, добавлен 29.04.2018Специфические особенности графического интерфейса программного приложения "Сурдофон". Характеристика принципа работы системы распознавания жестового языка с помощью нескольких видеокамер. Анализ упрощенной архитектуры рекуррентной нейронной сети.
статья, добавлен 24.02.2019Метод градиентного спуска. Решение задач оптимизации. Геометрическая интерпретация метода градиентного спуска с постоянным шагом. Критерии остановки процесса приближенного нахождения минимума. Выбор оптимального шага. Градиентный метод с дроблением шага.
реферат, добавлен 17.07.2013Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.
лабораторная работа, добавлен 14.12.2019Технологии распознавания образов, определение важности распознавания речи в современных условиях. Сущность процесса распознавания образов, скрытые марковские модели как основа системы распознавания речи. Аудиальная составляющая языкового тренажера.
статья, добавлен 24.05.2018Обзор решений в области разработки идентификационных систем. Способы хранения данных. Методы искусственного интеллекта и алгоритмы распознавания лиц. Архитектура веб-приложения. Процесс обработки фотографии. Особенности реализации программной системы.
дипломная работа, добавлен 28.10.2019Ускорение обработки огромных информационных массивов как одна из основных целей методики обнаружения вредоносного трафика с использованием анализа данных. Особенности настройки гиперпараметров алгоритма, который реализует метод машинного обучения.
статья, добавлен 18.01.2021Прогресс и проблемы нейронного машинного перевода с казахского на английский язык, охватывающие множество аспектов NMT, включая различные типы архитектуры, процедуры обучения, формирование корпусов, методы подготовки данных и показатели оценки.
статья, добавлен 13.12.2024Разработка и анализ работы алгоритмов для анализа тональности агрессивных комментариев, автоматического определения их эмоционального окраса. Реализация классифицирующих моделей машинного обучения, оценка их качества и сравнение их эффективности.
дипломная работа, добавлен 10.12.2019Рассмотрение алгоритма нахождения зависимостей между вторичными структурами ДНК и их эпигенетическими факторами. Проектирование структуры программного обеспечения. Разработка подсистемы дисперсионного анализа "ANOVA"; пользовательского интерфейса.
дипломная работа, добавлен 02.09.2018Примеры задач компьютерного зрения. Методы машинного обучения. Модели нейронных сетей для задачи мульти-классификации и детектирования. Порядок создания системы детектирования и сегментирования предметов одежды на фото. Нейронные сети, модель SSD300.
статья, добавлен 18.07.2020Типология методов распознавания образов и анализа изображений. Автоматизация процесса пополнения онтологии с применением процедуры верификации. Гибридная схема синтеза рисунков. Система статистического определения. Сущность способов машинного обучения.
статья, добавлен 09.01.2016Распознавание образов при помощи нейросетевых технологий. Алгоритм обучения сети Хопфилда. Вычисление квадратной матрицы размера для ключевых образов по правилу Хебба. Отсутствие проблем с обучением при наличии априорной информации о классах объектов.
статья, добавлен 08.06.2018Система регулирования объектов энергетики. Исследование способа обучения нейронной сети для блока автонастройки. Снижение энергоэффективности объектов и систем. Сравнение систем регулирования с ПИД-регулятором, с ПИД-регулятором и блоком автонастройки.
статья, добавлен 06.09.2021Способ по предсказанию успешности реакции с помощью методов машинного обучения. Модели с использованием методов глубокого обучения, решающие задачи генерации потенциально неуспешных реакций и классификации реакций на успешно проходящие и некорректные.
дипломная работа, добавлен 24.10.2020Создание методов для формально точного интеллектуального анализа данных на основе алгебраических критериев разрешимости и регулярности. Разработка формализма для задачи распознавания вторичной структуры белка в терминах современной теории распознавания.
автореферат, добавлен 31.07.2018Автоматизация сбора, анализа и обработки данных в супермаркете. Разработка программы для распознавания лиц в живой очереди или изображений в реальном времени. Архитектура нейронной сети. Общий вид и назначение персептрона, оценка точности его работы.
статья, добавлен 25.02.2019DoS-атаки представляют собой серьезную угрозу для онлайн-сервисов, сетей и бизнеса, способствуя значительным сбоям в работе, финансовым потерям и ущербу. Рассматриваются методы машинного и глубокого обучения для обнаружения и предотвращения D DoS-атак.
статья, добавлен 17.12.2024Разработка алгоритма анализа потокового видео и распознавания жестов. Создание методов на основе 2D и 3D модели объекта. Характеристика способа Виолы-Джонса с использованием признаков Хаара. Обнаружение объектов на изображениях в реальном времени.
статья, добавлен 14.05.2017- 96. Аспекты практического применения цветового различия для распознавания и выделения границ изображений
Выделение границ на изображениях при помощи цветового различия. Обоснованное применение современных подходов, касающихся распознавания графической информации. Улучшение методов анализа изображений и выделение весовых для распознавания признаков.
статья, добавлен 29.04.2017 Понятия, определения и проблемы, связанные с системами распознавания образов. Классификация методов, их применение для идентификации и прогнозирования. Роль и место распознавания образов в автоматизации управления сложными системами, кластерный анализ.
курсовая работа, добавлен 26.08.2010Особенности разработанных модулей системы распознавания образов, которые ответственны за формирование признаков и принятие решений при классификации. Признаки, полученные после ортогонального преобразования пространственного спектра видеоизображения.
статья, добавлен 29.06.2016Изучение принципа работы нейронной сети для распознавания образов на примере шумерского алфавита. Рассмотрение нейронной сети, которая должна точно распознавать идеальные векторы входа и с максимальной точностью воспроизводить зашумленные векторы.
статья, добавлен 24.02.2019Описание подхода, основанного на элементах статистической теории обучения и вероятностных трактовках взаимозависимости между входами и выходами нейронных сетей по их обучению и тестированию. Задачи распознавания урофлоурограмм заболеваний в урологии.
статья, добавлен 13.01.2017