Евклидовы кольца и кольца главных идеалов
Понятие кольца как непустого множества К с определенными на нем бинарным алгебраическими операциями сложения и умножения, требования к аксиомам. Разновидности кольца К и основные требования, предъявляемые к каждому из них, простейшие свойства и значение.
Подобные документы
Основные требования, предъявляемые к вычислительным алгоритмам. Системы линейных алгебраических уравнений. Устойчивость и точность прямых методов. Модификации концепции сопряженных градиентов. Анализ формулы Симпсона для вычисления двойных интегралов.
курс лекций, добавлен 16.05.2015История возникновения математики. Концептуализация числа и изобретение основных действий: сложения, вычитания, умножения и деления. Создание счётных устройств. Развитие высокотехнологичной, образованной и обеспеченной цивилизации благодаря математике.
реферат, добавлен 09.02.2016Использование формул комбинаторики при непосредственном вычислении вероятностей. Понятие и примеры перестановок, размещений и сочетаний. Выявление и оценка количества комбинаций, которые можно составить из элементов заданного конечного множества.
презентация, добавлен 20.11.2011Понятие и сущность, математическое обоснование множеств, их классификация и типы, характеристика и свойства, основные способы задания. Общее описание и принципы реализации операций над множествами: объединение, пересечение, разность и дополнение.
контрольная работа, добавлен 17.06.2015Понятие и классификация математических моделей, принципы и этапы их создания, предъявляемые требования. Прямая и обратная задачи математического моделирования, используемые компьютерные системы. Возможности современного квантово-механического ПО.
дипломная работа, добавлен 15.10.2013Усвоение межпредметных понятий и их основа формирования целостной естественнонаучной картины мира. Функция как математическое понятие, отражающее связь элементов одного множества с элементами из другого множества. Географические и декартовы координаты.
реферат, добавлен 01.07.2015Характеристика математики как науки о количественных отношениях и пространственных формах действительного мира, особенности ее назначения. Появление счетных функций: умножения, деления, сложения и вычитания чисел, первые геометрические понятия и цифры.
презентация, добавлен 19.11.2014Повторения Бернулли как повторные независимые испытания, этапы их реализации и предъявляемые требования, изучение примеров. Формула Пуассона, ее выведение. Понятие и содержание случайной величины. Числовые характеристики дискретной случайной величины.
контрольная работа, добавлен 20.02.2011Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 17.04.2015Понятия о комплексных числах, история их применения при решении линейных дифференциальных уравнений и вычислении интегралов. Правила сложения, вычитания, умножения и деления комплексных чисел. Порядок решения уравнений с комплексными переменными.
реферат, добавлен 06.03.2010Перевод заданного числа из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную с помощью таблиц и наоборот. Способы выполнения основных математических действий: сложения, вычитания и умножения чисел. Проверка их правильности.
контрольная работа, добавлен 28.03.2015Теория вероятности и математическая статистика. Основные категории: событие, вероятность, случайность. Теоремы сложения и умножения. Вероятность гипотез, формула Байеса. Независимые события. Биномиальное распределение. Редкие события, формула Пуассона.
методичка, добавлен 21.10.2010- 88. Теория множеств
Рассмотрение обозначений, принятых в теории множеств. Характеристические функции множеств, свойства операций над множествами. Применение понятия мощности множества для количественной характеристики множеств. Верхняя и нижняя грани числового множества.
курсовая работа, добавлен 07.05.2015 Комбинаторика - древнейшая и ключевая ветвь математики, изучающая дискретные объекты, множества и комбинации из заданного числа элементов. Перебор и построение дерева возможных вариантов. Комбинаторное правило умножения, примеры конфигураций и задач.
презентация, добавлен 09.12.2014Исследование основных особенностей позиционных и непозиционных систем счисления. Перевод целых десятичных чисел в недесятичную систему счисления. Характеристика операций сложения, вычитания и умножения многозначных чисел в различных системах счисления.
реферат, добавлен 30.11.2016Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.
контрольная работа, добавлен 16.06.2010Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.
контрольная работа, добавлен 29.11.2015Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.
контрольная работа, добавлен 24.01.2012Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.
контрольная работа, добавлен 06.11.2012Множества и операции над ними. Декартово произведение множеств. Понятие и свойства алгоритма. Аксиоматический метод. Понятие о комбинаторной задаче. Математические утверждения и их структура. Основы математической логики. Соответствия и отношения.
курс лекций, добавлен 25.09.2017Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.
курс лекций, добавлен 24.04.2015Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.
реферат, добавлен 30.11.2015Диаграмма Эйлера-Венна как геометрическая схема, с помощью которой можно изобразить отношения между подмножествами для наглядного представления. Дизъюнкция - операция логики, отражающая употребление союза "или" в содержательных логических выводах.
контрольная работа, добавлен 08.01.2016