Евклидовы кольца и кольца главных идеалов
Понятие кольца как непустого множества К с определенными на нем бинарным алгебраическими операциями сложения и умножения, требования к аксиомам. Разновидности кольца К и основные требования, предъявляемые к каждому из них, простейшие свойства и значение.
Подобные документы
Определение функций частное Ферма и их свойства. Примеры возможного использования функций Ф(а) для вычисления индексов элементов в группе Z(m). Методы получения и прикладное значение логарифмирования в мультипликативной группе кольца вычетов по модулю.
статья, добавлен 15.09.2012- 2. Многочлены
Многочлен как один из важнейших классов элементарных функций. Целый ряд преобразований в математике, связанный с изучением многочленов. Коэффициенты многочлена из определённого коммутативного кольца. Множества, определённые как решения систем многочленов.
контрольная работа, добавлен 23.04.2011 Понятие ассоциативного и коммутативного кольца. Использование термина кольцо с единицей при наличии нейтрального элемента для умножения. Построение поля, примеры колец и полей. Кольцо многочленов над полем. Делимость многочленов, разложение на множители.
курсовая работа, добавлен 02.03.2019Криптология как наука, занимающаяся методами шифрования и дешифрования. Выделение мультипликативной группы кольца вычетов. Группа в математике и ее множественные элементы с определённой на нём ассоциативной бинарной операцией. Свойства колец и полей.
курс лекций, добавлен 11.12.2014Понятие полукольца и кольца, векторного, евклидового и унитарного пространства. Рассмотрение различных видов линейных операторов: обратимых, симметрических, кососимметрических, нормальных, унитарных и ортогональных. Сопряженный и обратный операторы.
курсовая работа, добавлен 16.04.2012Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.
контрольная работа, добавлен 02.12.2013Системы линейных уравнений и матрицы. Действия с комплексными числами. Смежные классы и теорема Лангранжа. Тригонометрическая форма комплексного числа. Понятия дискриминант и результант. Многочлены и ряды от переменной. Описание кольца степенных рядов.
курс лекций, добавлен 28.12.2013Заключение фиктивного брака для поступления в университет С. Ковалевской. Проведение исследования равновесия кольца Сатурна. Анализ изучения существования аналитического решения задачи Коши для систем дифференциальных уравнений с частными производными.
презентация, добавлен 21.11.2016Строение абелевых групп симметрий хиггсовского потенциала в вакууме для N-дублетной хиггсовской модели. Типы центральных простых конечномерных некоммутативных йордановых супералгебр. Конструкция кольца частных для обобщенной алгебры Новикова-Пуассона.
научная работа, добавлен 28.10.2018Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.
реферат, добавлен 17.03.2015Представление и обработка знаний в компьютерных системах обучения следящего типа. Парадоксы вычислительной математики. Теория моделей обогащенных булевых алгебр. Алгоритмическая теория разрешимых групп. Линейно минимальные кольца и алгебры. Теория колец.
материалы конференции, добавлен 26.12.2012Матрица как математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Общие множители всех элементов матрицы.
реферат, добавлен 02.02.2015Биография и научная деятельность М.А. Наймарка. Теория самосопряженных расширений симметрических операторов. Нормированные кольца и представление об алгебрах. Линейные дифференциальные операторы. Теория групп, группы Ли и теоремы Гельфанда-Наймарка.
реферат, добавлен 03.06.2015Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.
контрольная работа, добавлен 24.09.2014Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.
контрольная работа, добавлен 29.08.2010Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.
реферат, добавлен 30.10.2010Элементы, из которых состоит множество. Примеры обозначений с помощью логической символики. Квантор всеобщности и существования. Свойства множеств. Операции логического сложения, умножения, разности. Окрестности точки х как особый вид множества.
лекция, добавлен 29.09.2013Определение абсолютной величины смешанного произведения векторов. Рассмотрение и характеристика условия параллельности и перпендикулярности прямых. Ознакомление с операциями сложения матриц. Исследование и анализ процесса умножения матрицы на число.
лабораторная работа, добавлен 29.11.2015Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.
презентация, добавлен 27.09.2017Понятие и общая математическая характеристика множества, его главные свойства и отличительные признаки. Способы задания числовых значений. Описание основных операций, проводимых над множествами: объединение и пересечение. Диаграмма Эйлера-Венна.
контрольная работа, добавлен 04.12.2013Изучение комплексных чисел в рамках школьной математической программы. Описание правил сложения, вычитания и других действий. Вывод формул сокращенного умножения. Решение примеров с комплексными числами. Представление множества в виде кругов Эйлера.
реферат, добавлен 02.05.2019Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.
лекция, добавлен 09.07.2015Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.
контрольная работа, добавлен 13.05.2014