Уравнение линий в полярных координатах

Анализ полярной системы координат на плоскости и в пространстве, формулы перехода к декартовым. Определение площади произвольной элементарной фигуры. Построение трёхлепестковой розы, архимедовой спирали и улитки Паскаля. Уравнение лемнискаты и кардиоиды.

Подобные документы

  • Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.

    курс лекций, добавлен 06.11.2009

  • Дифференциальное уравнение системы. Вычисление переходной и импульсной переходной характеристики. Построение частотных характеристик в пакете MatLab. Уравнения состояния системы в нормальной и в канонической форме. Проверка коэффициента усиления.

    контрольная работа, добавлен 18.06.2015

  • Сущность понятия и уравнение окружности в прямоугольной системе координат. Понятие и графическое изображение эллипса. Сущность и графики параболы и гиперболы. Определение и уравнение параболы. Гипербола в опыте Резерфорда при рассеивании альфа-частиц.

    реферат, добавлен 27.11.2008

  • Составление уравнения и определение его корней. Натуральные решения уравнения, доказательство гипотезы Била. Представление натурального числа по формуле остатков от деления целого числа на данное натуральное. Использование формулы для суммы кубов.

    статья, добавлен 03.03.2018

  • Решение задач на определение неопределенного интеграла, площади фигуры, образованной линиями y=4 и y=x2, порядка и границ интегрирования, общего интеграла дифференциального уравнения по признаку Лейбница. Применение признака Даламбера и расчет ряда Фурье.

    контрольная работа, добавлен 03.03.2014

  • Применение геометрических образов, полученных с помощью программных средств. Решение дифференциальных уравнений. Понятие автономной системы и фазового пространства. Фазовый портрет линейной системы на плоскости. Построение фазовых портретов в Delphi.

    учебное пособие, добавлен 08.09.2015

  • Линия пересечения двух плоскостей. Уравнение прямой, проходящей через заданную точку параллельно данному вектору. Определение угла из скалярного произведения векторов. Изучение условия коллинеарности. Признак перпендикулярности и параллельности прямых.

    презентация, добавлен 21.09.2013

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.

    контрольная работа, добавлен 29.11.2015

  • Определение и методы решения иррациональных уравнений. Преобразования, при которых уравнение переходит в равносильное уравнение. Решение уравнения возведением обеих его частей в квадрат или введением новой переменной. Использование искусственных приемов.

    реферат, добавлен 06.03.2010

  • Уравнения прямой на плоскости, его тождественное преобразование и основные понятия. Взаимное расположение прямых. Расстояние от точки до прямой. Семейство прямых на плоскости. Геометрический смысл линейного неравенства и системы линейных неравенств.

    реферат, добавлен 16.05.2013

  • Качественный анализ линейной и нелинейной динамических систем, определение условий их устойчивости и построение фазовых портретов в программе WINSET. Вычисление дифференциальных уравнений Бюргерса. Компьютерное исследование уравнения на фазовой плоскости.

    контрольная работа, добавлен 10.02.2013

  • Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Нахождение площади плоской фигуры. Существование определённого интеграла. Дифференциальные уравнения.

    контрольная работа, добавлен 30.01.2012

  • Амплитудно-частотная характеристика. Дифференциальное уравнение как уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной. Передаточные функции сложных систем. Реакция системы на входное воздействие.

    практическая работа, добавлен 11.03.2016

  • Определение уравнения прямой как множества точек, координаты которых в выбранной системе координат удовлетворяют уравнению первой степени с 2-мя неизвестными. Геометрический смысл коэффициентов, специфика канонического уравнения и с угловым коэффициентом.

    контрольная работа, добавлен 29.09.2014

  • Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.

    лекция, добавлен 22.11.2015

  • Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.

    контрольная работа, добавлен 03.02.2017

  • Линейная зависимость векторов. Уравнение прямой, проходящей через две точки. Общее уравнение кривых второго порядка. Каноническое уравнение гиперболы и эллипса. Квадратичные формы переменных. Тригонометрическая форма комплексного числа, Bзвлечение корня.

    контрольная работа, добавлен 13.09.2009

  • Определение координат точки перегиба обвода спинки профиля. Функция программного комплекса Mathcad, которая применяется для вычисления индекса корреляции. Интегральное уравнение для расчета спинки симметричного исходного профиля в аналитическом виде.

    статья, добавлен 14.04.2021

  • Особенности криволинейной трапецией. Характеристика фигуры, ограниченной прямыми. Рассмотрение формулы для вычисления площади криволинейной трапеции. Нахождение точки пересечения кривых. Методология вычисления площади фигуры, ограниченной линиями.

    задача, добавлен 17.02.2016

  • Решение интегро-дифференциального уравнения задачи о плоской трещине нормального разрыва в упругом пространстве. Построение рекуррентного процесса для определения последовательных приближений функции Гельдера. Использование формулы Адамара и Лагранжа.

    статья, добавлен 29.05.2017

  • Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.

    лекция, добавлен 09.07.2015

  • Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.

    презентация, добавлен 17.09.2013

  • Основные свойства системы дифференциальных уравнений (Навье-Стокса) в частных производных, описывающей движение вязкой ньютоновской жидкости. Уравнения Навье-Стокса в сферической системе координат. Скалярная форма записи системы уравнений Навье-Стокса.

    презентация, добавлен 14.01.2018

  • Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.

    реферат, добавлен 30.11.2015

  • Вычисление определителя матрицы разложением. Решение системы уравнений методом Гаусса. Нахождение площади грани и длины высоты пирамиды. Свойства скалярного произведения. Каноническое уравнение высоты пирамиды. Уравнение медианы, опущенной из вершины.

    контрольная работа, добавлен 01.06.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.