Фракталы, их история и классификация
Фрактальная геометрия Бенуа Мандельброта. Наиболее известные геометрические и алгебраические фракталы. Применение фракталов в экономике, механике жидкостей и газов, физике поверхностей, нефтехимии, геологии, картографии. Особенности фрактальных картин.
Подобные документы
Универсальный метод построения (черчения) трехмерных проекций гиперкубов любых n-мерных измерений (3ПГК-n) в любых проекциях и ракурсах. Геометрические особенности трехмерной проекции четырехмерного гиперкуба (3ПГК-4). Характеристика вершин 3ПГК-4.
методичка, добавлен 25.06.2017Особенность векторного произведения коллинеарных векторов. Характеристика создания градиентов в координатах. Анализ результата раскрытия определителя. Геометрические и алгебраические свойства смешанного творения. Суть циклической перестановки множителей.
реферат, добавлен 23.10.2014Свойства развертки поверхностей. Способы построения развертки многогранных поверхностей. Применение способа треугольника при построении развертки пирамиды. Развертка призмы способами нормального сечения и раскатки. Коническая и цилиндрическая поверхности.
реферат, добавлен 28.12.2011- 54. Истоки геометрии
Геометрия как одно из наиболее долговечных творений человеческой мысли. Пифагор и его математическая школа в VI-V в. до н.э. Вклад Платона в развитие математики. Окончательное оформление геометрии как науки. Евклид и его уникальная в книга "Начала".
реферат, добавлен 24.10.2010 - 55. Линейная алгебра
Изучение формул вычисления определителей второго и третьего порядков. Применение методов Крамера и Гаусса для решения систем линейных уравнений. Аналитическая геометрия на плоскости и в пространстве. Представление комплексных чисел и операции над ними.
тест, добавлен 06.09.2017 История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010Математика как наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов. Биография Николая Лобачевского. Начало преподавательской деятельности. Применение неевклидовой геометрии.
реферат, добавлен 25.02.2015Геометрия Лобачевского ("воображаемая" геометрия). Создание модели геометрии Лобачевского из материалов геометрии Евклида, а также установление непротиворечивости и законности новой геометрической системы, разные геометрии и разные пространства.
реферат, добавлен 18.02.2010Рассмотрение плана проведения семинарских занятий. Анализ алгебраических поверхностей и их классификация. Приведение уравнений поверхностей второго порядка к каноническому виду. Исследование асимптотических направлений, пересечений, касаний, особых точек.
методичка, добавлен 25.12.2014- 60. Множества чисел
Алгебраические операции с комплексными числами. История развития представления человека о числах, их прикладное значение в рамках научного познания. Основные действия над комплексными числами. Применение сопряженных чисел и примеры их использования.
презентация, добавлен 05.12.2016 Геометрия как одна из наиболее древних математических наук, возникновения и развитие знаний в данной сфере, современные достижения. Сущность и содержание теорем Чевы и Менелая, эффективность и целесообразность их применения теорем при решении задач.
научная работа, добавлен 03.05.2019Понятие стереометрии (геометрия в пространстве) как раздела геометрии, изучающего положение, форму, размеры и свойства различных пространственных фигур. Анализ возникновения и развития стереометрии, ее применение в практической деятельности человека.
статья, добавлен 24.02.2019Анализ динамики реальных природных систем. Моделирование каскадных водопадов и турбулентных процессов. Самоподобие как основное характерное свойство фракталов. Понятие дробной размерности. Правила построения снежинки Коха. Салфетка и ковёр Серпинского.
реферат, добавлен 07.12.2016Построение фрактальной модели поверхности, позволяющей с определенной достоверностью описывать сложные объекты, в достаточной мере учесть структуру шероховатого поверхностного слоя, а также использовать ее при решении задач контактного взаимодействия.
статья, добавлен 27.05.2018Понятие "кейса" как комплекса разнообразных учебных материалов. Особенности и главные составляющие мультимедиаподхода. Основные преимущества электронных учебников и пособий при изучении геометрии. Описание методов изучения поверхностей второго порядка.
статья, добавлен 29.07.2013Рассмотрение линий и пучков второго порядка на проективной плоскости. Аффинная геометрия с проективной точки зрения. Диаметральные плоскости, как полярные плоскости несобственных точек. Проективная классификация вещественных поверхностей второго порядка.
курсовая работа, добавлен 22.01.2015Геометрия Лобачевского (гиперболическая геометрия) как одна из неевклидовых геометрий. Евклидова аксиома о параллелях. Разработка модели планиметрии. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому.
реферат, добавлен 28.05.2014- 68. Линейная алгебра
Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.
курс лекций, добавлен 22.01.2013 Возникновение графических изображений и чертежа, зарождение картографии. Роль современного графического языка в создании и оперировании пространственными образами объектов. Изображение пространственных форм на плоскости в курсе начертательной геометрии.
реферат, добавлен 18.03.2015Геометрия греческого математика Евклида и доказание пятой аксиомы о параллельных прямых. Гиперболический параболоид и описание искривленного пространства в геометрии Лобачевского, а также использование его формул в расчетах современных синхрофазотронов.
реферат, добавлен 13.12.2015Научно-исследовательские труды Б. Римана. Риманова геометрия – раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, с дополнительной структурой, римановой метрикой. Идея математического пространства.
реферат, добавлен 16.12.2017История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.
статья, добавлен 03.09.2011Построение линии пересечения двух поверхностей в частном и в общем случаях. Характеристика особого случая построения линии пересечения двух поверхностей. Особенности процесса построения линии пересечения поверхностей способом секущих плоскостей.
лекция, добавлен 02.04.2019Актуальность применения определенного интеграла и его приложений, использование в математике, физике, механике. Решение дифференциальных уравнений практического содержания. Статический момент и координаты центра тяжести плоской кривой, плоской фигуры.
курсовая работа, добавлен 18.03.2015Геометрия - наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Определение роли, которую сыграла неевклидова геометрия в математике и теории геометризованной гравитации Гросмана-Гильберта-Эйнштейна.
статья, добавлен 06.04.2019