Фракталы, их история и классификация
Фрактальная геометрия Бенуа Мандельброта. Наиболее известные геометрические и алгебраические фракталы. Применение фракталов в экономике, механике жидкостей и газов, физике поверхностей, нефтехимии, геологии, картографии. Особенности фрактальных картин.
Подобные документы
Предмет начертательной геометрии и способы проецирования. Точка и прямая на комплексном чертеже. Поверхности и точки на ней, сечение поверхностей плоскостями. Теоретические основы решения метрических задач. Аксонометрические оси и показатели искажения.
курс лекций, добавлен 18.04.2013Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.
курсовая работа, добавлен 23.04.2011Искусственная нейронная сеть, хронология и известные применения. Этапы решения задач. Классификация по типу входной информации, по характеру обучения, настройки синапсов, связей и по времени передачи сигнала. Отличия от машин с архитектурой фон Неймана.
реферат, добавлен 17.09.2010Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.
учебное пособие, добавлен 14.03.2014Введение геометрического объекта в систему отсчета. Использование метода секущих плоскостей и вспомогательных сфер. Построение проекции объекта, стоящего на плоскости. Геометрические свойства равнобедренного треугольника. Натуральная величина высоты.
учебное пособие, добавлен 27.08.2017Изучение геометрии криволинейных поверхностей как важнейший этап в профессии архитектора. Поверхность как совокупность всех последовательных положений некоторой перемещающейся в пространстве линии. Геометрический анализ известных архитектурных сооружений.
статья, добавлен 11.08.2018Фундаментальное значение теоремы Пифагора для геометрии. Методы Евклида и Леонардо Давинчи. Алгебраическая формулировка теоремы. Доказывание ее через подобные треугольники, равнодополняемость, методом площадей. Применение в Индии "правила веревки".
презентация, добавлен 17.11.2015Понятие тригонометрии как раздела математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Применение науки в древности для расчётов в астрономии, геодезии и архитектуре. Особенности ее возникновения и стимул для развития.
реферат, добавлен 28.09.2014Алгебраические операции над комплексными числами и комплексное сопряжение. Показательная функция комплексного аргумента и применение формулы Эйлера. Геометрическая интерпретация комплексных чисел. Разложение многочлена с действительными коэффициентами.
курс лекций, добавлен 23.10.2013Области художественных жанров, в которых работал Мауриц Корнелис Эшер. Связь математики и искусства, свойства и геометрические направления картин Эшера. Описание работ, в которых отображены математические фигуры и приёмы, иллюстрация теорем и аксиом.
практическая работа, добавлен 21.06.2022- 111. Свойства призмы
Понятие призмы как геометрического тела, ее свойства, сфера применения и способ расчета ее площади. Измерение объемов. Краткий обзор развития геометрии. Симметрия в пространстве. Свойства боковых ребер и поверхностей призмы. Расстояние между плоскостями.
презентация, добавлен 20.05.2012 Развитие методов научного исследования проблем динамики твердого тела. Значение труда Н.И. Лобачевского "Условные уравнения для движения и положение главных осей в твердой системе" для возможности эффективного применения геометрического метода в механике.
статья, добавлен 26.04.2019Построение одулярной теории кривых и поверхностей, установление связей с евклидовой теорией. Получение кривых с постоянными кривизной и кручением. Траектории движений по векторному полю ускорений движения. Свойства геодезических линий в пространстве.
автореферат, добавлен 15.02.2018Применение функций комплексного переменного в физике. Использование мнимого числа и функции от комплексного переменного в науках. Решение линейных дифференциальных уравнений с постоянными коэффициентами. Геометрическое истолкование комплексных чисел.
статья, добавлен 25.12.2017Изучение сфер жизни человека, в которых присутствует математика. Связь геометрии с повседневной жизнью человека. "Золотое сечение" в окружающей действительности, его применение в архитектуре и произведениях искусства. История возникновения геометрии.
презентация, добавлен 14.04.2016Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.
шпаргалка, добавлен 25.03.2011- 117. Линейная алгебра
Матрица и определители. Применение способа разложения по элементам столбца (строчки). Алгебраические дополнение элемента матрицы. Решение системы линейных уравнений. Составление общего уравнения плоскости, проходящей через точку перпендикулярно вектору.
контрольная работа, добавлен 20.03.2017 Производственная сфера хозяйства и использование математических методов для оценки её эффективности. Межотраслевой баланс производства и применение линейной алгебры в экономике. Графическое отображение закономерностей и расчётф зависимости явлений.
контрольная работа, добавлен 20.06.2012Параметризация поверхностей с помощью внутренних криволинейных координат. Первая и вторая квадратичные формы поверхности, средняя и гауссова кривизна. Вычисление характерных величин для простых поверхностей: сферы, цилиндра, конуса и геликоида.
курсовая работа, добавлен 30.01.2019- 120. Алгебра матрицы
Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.
реферат, добавлен 25.05.2017 Построение проекций линий пересечения поверхностей способом вспомогательных секущих плоскостей и концентрических сфер. Анализ и характеристика заданных поверхностей. Построение развертки заданной поверхности. Линия пересечения конуса и цилиндра.
контрольная работа, добавлен 06.11.2013Краткая биографическая справка из жизни Н.И. Лобачевского. История появления геометрии. Модель Пуанкаре, Клейна и интерпретация Бельтрами. Практическое применение геометрии Лобачевского: теорема Пифагора, площадь треугольника и круга, длина окружности.
контрольная работа, добавлен 15.04.2013Наглядность в обучении и воспитании младших школьников. Классификация наглядных пособий по математике. Развитие пространственного мышления школьников. Наглядная геометрия, ее роль и место, история возникновения. Развитие мыслительных операций учащихся.
курсовая работа, добавлен 19.01.2021Изучение основных свойств треугольника, прямоугольника, ромба и квадрата. Признаки равенства прямоугольных треугольников. Замечательные линии и точки в треугольнике. Доказательство теоремы Пифагора. Виды четырёхугольников. Основные геометрические фигуры.
реферат, добавлен 14.06.2015Понятие плоской кривой линии, превращение эллипса в окружность при равных осях. Построение параболы и гиперболы. Образование поверхностей вращения линейчатых и нелинейчатых. Особенности поверхностей с плоскостью параллелизма и задаваемых каркасом.
реферат, добавлен 22.05.2012