Числа Фибоначчи в жизни и строении человеческого тела
Числа Фибоначчи - математическая последовательность, отражающаяся во всех творениях мироздания, которые подчинены единым законам природы и имеют большой практический и теоретический интерес. Анализ специфических особенностей правила золотого сечения.
Подобные документы
Формула нахождения очень больших простых чисел. Алгоритмы разложение больших чисел на простые множители. Вычисление ряда чисел Фибоначчи. Числовой код треугольника Паскаля. Простые числа как основа защиты электронной коммерции и электронной почты.
статья, добавлен 03.03.2018Разработка рациональной системы рыночного анализа. Основные принципы и структура пятиволнового паттерна. Применение теории волн Эллиота на фондовом рынке. Два исключения плоской коррекции. Значение работ Фибоначчи для развития математики и астрофизики.
реферат, добавлен 03.05.2014Система правил гармонии, основанная на золотом сечении. Икосаэдр и додекаэдр. Ряд Фибоначчи. "Золотая пропорция" - эстетический принцип эпохи Средневековья. Математическое понимание гармонии. Деление отрезка в золотом отношении. Золотой треугольник.
презентация, добавлен 06.04.2012В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.
статья, добавлен 26.01.2020История возникновения и математическая сущность золотого сечения, использование принципов в изобразительном искусстве, скульптуре и литературе. Пропорции золотого сечения, создающие впечатление гармонии красоты, построение золотой пропорции в геометрии.
статья, добавлен 02.03.2019Золотое сечение - иррациональное число, открытое древними греками. Существование числовой последовательности, известной как ряд Фибоначчи. Примеры спирального развития сегментов раковины. Пропорции различных частей человеческого тела, его золотое сечение.
реферат, добавлен 09.10.2018Применение формул Эйлера, Гаусса и Куммера для гипергеометрической функции. Свойства "золотого сечения", его роль в математике и в теории чисел. Доказательство лемм с помощью схемы Чудновского-Хаты для нахождения числового значения "золотого сечения".
статья, добавлен 27.05.2018Общее понятие и признаки комплексного числа. Тригонометрическая форма комплексного числа. Произведение двух комплексных чисел, формула его вычисления. Корни n-ой степени комплексного числа. Действительная и комплексная степень комплексного числа.
реферат, добавлен 21.08.2017- 34. Фигурные числа
История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.
реферат, добавлен 17.06.2018 Формування в учнів початкової школи розуміння цілого та його частин. Розв'язування задач, пов'язаних зі знаходженням частини числа та числа за відомою його частиною. Дроби та їх зображення. Знаходження дробу від числа та числа за величиною його дробу.
презентация, добавлен 10.11.2019Определение вероятности того, что среди шести взятых одновременно деталей три окажутся первого вида. Проведение расчета вероятного числа студентов, родившихся 1 мая. Особенности применения полиноминальной схемы. Анализ закона распределения числа.
задача, добавлен 07.11.2013Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Свойства комплексных чисел. Описание действий с ними. Основная теорема алгебры. Модуль комплексного числа.
реферат, добавлен 13.12.2022- 38. Число "Пи"
"Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".
доклад, добавлен 31.01.2018 Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.
реферат, добавлен 08.02.2017- 40. Число е
Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа, добавлен 15.05.2011 Программные способы получения последовательностей большого периода. Анализ преимуществ и недостатков мультипликативного генератора Фибоначчи. Использование компьютерной алгебры Sage для случайной генерации комбинаций квадратных матриц с конечными полями.
статья, добавлен 14.08.2022Анализ изучения важнейшей математической константы, которая выражает отношение длины окружности к ее диаметру. Практическое применение числа "Пи". Проведение исследования современных представлений о культуре. Взаимосвязь пирамиды Хеопса и числа "Пи".
презентация, добавлен 05.11.2019- 43. Протилежні числа
Методика формування уявлення про суть поняття "протилежні числа". Способи знаходження й правильного запису числа, протилежного до даного. Розв’язувати рівнянь, що передбачають застосування поняття числа, протилежного до даного. Приклади протилежних чисел.
конспект урока, добавлен 19.09.2018 Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
конспект урока, добавлен 20.09.2018Сравнение числа Пи с другими математическими величинами и их визуализация. Изучение методов использования компьютерных систем для интерпретации математических величин. Анализ возможности использования среды КСС "Demomod" при визуализации моделей числа.
статья, добавлен 22.01.2017Рассмотрение теоретико-множественного истолкования натурального числа и понятия преемственности. История формирования понятия натурального числа в начальной школе. Педагогические технологии формирования понятия натурального числа в современной школе.
реферат, добавлен 12.11.2016Феномен золотого сечения как свойства нелинейных объектов. Анализ структур квазикристаллов для выявления пятиугольников и плиток Пенроуза. Возникновение математических абстракций, построенных на базе золотой пропорции, из обобщения природных явлений.
реферат, добавлен 26.01.2019Рассмотрение принципов формирования целочисленных и дробных обобщенных числовых в последовательность. Ознакомление с тождествами Кассини чисел Фибоначчи. Исследование и характеристика методов обобщенных чисел приведения к тождеству типа Кассини.
статья, добавлен 24.01.2018Моделирование вещественных параметров вычисления формулы золотого сечения, в случаях невозможности применения математической модели, удовлетворяющей описание прикладных задач. Исчисление поправочных коэффициентов в уравнении пропорции двух величин.
статья, добавлен 28.10.2015Изучение значения и видов треугольников. Использование принципа "золотого треугольника" в бессмертных творениях Леонардо да Винчи. Трансформация грубой материи в организованную. Божественные, достоинства, символизирующие собой три царства природы.
презентация, добавлен 05.10.2017