Числа Фибоначчи в жизни и строении человеческого тела
Числа Фибоначчи - математическая последовательность, отражающаяся во всех творениях мироздания, которые подчинены единым законам природы и имеют большой практический и теоретический интерес. Анализ специфических особенностей правила золотого сечения.
Подобные документы
- 101. Хроматические числа
Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.
книга, добавлен 25.11.2013 Характеристика классической задачи разложения целого числа в произведение его простых делителей. Исследование экспоненциального роста размерности пространства состояний с ростом числа квантовых частиц. Преимущества использования квантовых компьютеров.
статья, добавлен 21.06.2018Аналіз історії виникнення основної проблеми ірраціонального числа. Доцільні суми як нескінченні десяткові періодичні дроби. Модуль числової дійсності та його властивості. Особливості геометричного змісту величини повноважного чисельного результату.
курсовая работа, добавлен 28.01.2016Узагальнення та систематизація надбаних учнями знань, вмінь оперувати поняттями додатне, від'ємне число, цілі та раціональні числа, сприяння вихованню у них почуття самоконтролю. Різнорівневі завдання для самостійної роботи на аркушиках через копірку.
разработка урока, добавлен 20.09.2019- 105. Числа Эйлера
Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.
реферат, добавлен 01.10.2013 Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.
разработка урока, добавлен 08.06.2019- 107. Комплексные числа
Геометрическая интерпретация комплексного числа. Арифметические операции над комплексными числами. Геометрическое изображение суммы, вычитание и деление, геометрическое изображение разности, тригонометрическая форма, свойства модуля и аргумента.
курсовая работа, добавлен 29.11.2014 Дослідження означення арифметичного квадратного кореня з невід'ємного числа. Характеристика способу розв'язання найпростіших ірраціональних рівнянь. Особливість ознайомлення учнів з новою дією, що допоможе знайти число за значенням його квадрата.
разработка урока, добавлен 12.10.2018Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.
курс лекций, добавлен 27.08.2017- 110. Комплексные числа
История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.
контрольная работа, добавлен 30.01.2010 - 111. Числа Бернуллі
Послідовність многочленів Апеля. Многочлени та числа Бернуллі. Основна властивість многочленів Бернуллі. Зв’язок з простими числами. Експоненційна генератриса послідовності. Правило винесення за знак біноміального коефіцієнта. Формальний степеневий ряд.
курсовая работа, добавлен 22.01.2015 Определение процента (части) от числа. Определение числа по его части, выраженной в процентах. Процентное сравнение чисел (величин). Примеры изменения цены при повышении на 25 % и понижении на 25 %. Задачи на "усыхание" по теме "Смеси, сплавы, растворы".
презентация, добавлен 06.11.2014Рассматривается специальная задача об эргономичном размещении конечного числа символов по конечному числу ячеек. Решение задачи применяется для более удобного размещения английских и русских букв на клавиатуре мобильного телефона.
статья, добавлен 10.11.2015- 114. Історія арифметики
Виникнення та розвиток числових уявлень, лічби і поняття числа. Історія нумерації і систем числення. Еволюція сучасних цифр. Основні етапи розвитку дробів. Натуральні і дробові числа. Велика та мала теореми Ферма. Теорія ірраціональних та дійсних чисел.
учебное пособие, добавлен 19.04.2013 Определение и свойства модуля (абсолютной величины) действительного числа. Расстояние между точками числовой прямой. Графическое изображение на прямой окрестности точки как множества решений неравенства. Изучение правил сложения и вычитания модулей.
презентация, добавлен 21.09.2013- 116. Комплексные числа
История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011 История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014Составление уравнения и определение его корней. Натуральные решения уравнения, доказательство гипотезы Била. Представление натурального числа по формуле остатков от деления целого числа на данное натуральное. Использование формулы для суммы кубов.
статья, добавлен 03.03.2018Зарождение счета в глубокой древности. Появление систем счисления. Исследование процесса формирования понятия натурального числа. Вавилонские клинописные обозначения числа. Создание счетных приборов. Осознание людьми бесконечности натурального ряда чисел.
реферат, добавлен 13.02.2015- 120. Золотое сечение
Пропорциональное деление отрезка на неравные части. Золотое сечение в математике, анатомии человеческого тела, скульптуре, архитектуре, живописи, природе, поэзии и музыке. Форма золотого прямоугольника. Геометрическое изображение золотой пропорции.
презентация, добавлен 16.05.2013 Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
реферат, добавлен 15.12.2016Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.
реферат, добавлен 02.03.2017Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022Числовые системы и история их появления. Действительное число как математическая абстракция, возникшая из потребности человека в измерении геометрических и физических величин окружающего мира. Бесконечные десятичные дроби. Проведение извлечение корня.
курсовая работа, добавлен 12.02.2014Использование формулы полной вероятности при выборе шаров. Определение благоприятного числа случаев. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Построение закона распределения случайной величины и графиков функций.
контрольная работа, добавлен 09.10.2014