Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
Подобные документы
Параметризация свёрточной нейронной сети для осуществления семантического анализа текста и определения его эмоциональной окраски. Архитектура сети, её обучение и тестирование с использованием объектно-ориентированного языка Python и библиотеки Keras.
статья, добавлен 19.02.2019Описание существующих видов нейронных сетей. Выявление их достоинств и недостатков. Основные возможности программного продукта Matlab. Моделирование и обучение нейронной сети на основе созданных дескрипторов для каждого символа английского алфавита.
дипломная работа, добавлен 07.08.2018Задачи для определения оптимальной модели нейронной сети. Характеристика общей модели нейронной сети. Сравнение различных алгоритмов поиска оптимального пути. Эффективность пчелиного алгоритма в решении задачи исследования и патрулирования местности.
статья, добавлен 08.03.2019Исследование решения задачи автоматического распознавания коридоров набивных стеллажей вилочными погрузчиками с использованием нейронной сети. Описания принципа работы и структуры нейронной сети. Проверка работоспособности построенной нейронной сети.
статья, добавлен 25.02.2019Рассмотрение алгоритма построения самоорганизующейся нейронной сети, основанного на применении метода глобальной оптимизации. Сравнение результатов построения моделей на наборах данных, созданных при помощи описанного алгоритма и средства TensorFlow.
статья, добавлен 10.12.2024Погружение структурной модели в пространство рецепторных и аксоновых полей - процесс, порождающий топологическую модель нейронной сети, по которой можно реализовать адаптивный алгоритм обработки данных. Сущность регуляризации параметров алгоритма.
статья, добавлен 10.05.2022Специфические особенности графического интерфейса программного приложения "Сурдофон". Характеристика принципа работы системы распознавания жестового языка с помощью нескольких видеокамер. Анализ упрощенной архитектуры рекуррентной нейронной сети.
статья, добавлен 24.02.2019Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.
курсовая работа, добавлен 21.02.2016Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.
презентация, добавлен 16.10.2013Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024На базе информации о векторе состояния нелинейной модели и его производной формирование статической нейронной сети, аппроксимирующей правую часть уравнений динамики. Линеаризация сети, в результате которой определение коэффициентов линейной модели судна.
статья, добавлен 28.10.2018Особенности использования нейронной сети для стабилизации положения подвижных элементов в среде OpenAI. Знакомство с решением задачи стабилизации положения подвижных элементов в технических системах. Рассмотрение этапов проектирования нейронной сети.
статья, добавлен 19.02.2019Обзор технологии Text Mining. Алгоритмы для многоклассовой классификации текстов для выделения тега. Моделирование нейронной сети с использованием среды программирования Python для анализа данных и построения предсказательных моделей и библиотек.
дипломная работа, добавлен 07.09.2018Искусственная нейронная сеть, обеспечивающая последовательное выделение окрашенных гауссовых сигналов из смеси. Правило обучения каскадной нейронной сети, основанное на критерии минимума среднего квадрата ошибки предсказания, упрощающее реализацию сети.
статья, добавлен 22.07.2013Исследование и анализ результатов сравнения нейронной сети на основе формальных понятий с другими методами классификации данных. Ознакомление с методами классификации данных на реальных датасетах. Характеристика антимононотонности соответствия Галуа.
дипломная работа, добавлен 01.09.2017Проблема преобразования данных без использования конкретной формулы. Нейронные сети - системы искусственного интеллекта. Способность системы самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.
статья, добавлен 15.02.2019Процесс формирования параметров изменяемого пользовательского интерфейса. Возможность применения методов нейронных сетей для обработки характеристик и классификации категорий пользовательских интерфейсов; структура искусственной нейронной сети.
статья, добавлен 08.03.2019Разработка программы распознавания действий человека. Работа с видеопотоком и классификатором. Выделение особенностей и структуры сверточной нейронной сети. Функции активации искусственного нейрона. Выделение контура из изображения и определение движения.
дипломная работа, добавлен 05.11.2015Изучены вопросы формирования массива данных для построения искусственной нейронной сети, предназначенной для поиска взаимосвязей между социальными и экономическими параметрами развития регионов России. Исследования в области региональной компаративистики.
статья, добавлен 01.09.2021Структура искусственной нейронной сети и принципы ее работы. Нейросетевая классификация. Создание программы, которая используя технологии нейронных сетей, сможет распознавать рукописные буквы. Центрирование изображения. Пример работы с приложениями.
статья, добавлен 30.05.2013Изучение принципа работы нейронной сети для распознавания образов на примере шумерского алфавита. Рассмотрение нейронной сети, которая должна точно распознавать идеальные векторы входа и с максимальной точностью воспроизводить зашумленные векторы.
статья, добавлен 24.02.2019Анализ предметной области. Технологии классификации текстовых данных. Диаграмма прецедентов системы определения категорий тендеров. Проектирование архитектуры системы определения категорий тендеров. Формирование обучающих выборок для нейронной сети.
дипломная работа, добавлен 28.11.2019Основные требования к средствам формирования случайных и псевдослучайных последовательностей. Интересные особенности и недостатки RSA-алгоритма генерации. Задачи, требующие решения при построении компьютерных систем (КС) в защищенном исполнении.
курсовая работа, добавлен 12.05.2017Предложен формальный алгоритм построения полносвязной части нейросетевого классификатора. Описаны подходы к подбору гиперпараметров. При использовании данного алгоритма удалось снизить общее количество настраиваемых параметров полносвязной нейронной сети.
статья, добавлен 02.04.2019