Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
Подобные документы
Сущность и структура простой рефлекторной нейронной сети, ее главные консонанты и функциональные особенности. Биологическая изменчивость и закономерности обучения. Классификация и формы данных сетей, типы используемой информации, применяемые модели.
контрольная работа, добавлен 27.11.2014Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Особенность подготовки данных для обучения сети. Главный анализ формирования обучающих массивов в задаче. Вычисление суммы квадратичных отклонений выходов паутины от эталонов. Основная характеристика проведения результатов регрессионного анализа.
лабораторная работа, добавлен 14.01.2015Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
статья, добавлен 29.04.2017Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.
статья, добавлен 25.03.2019Расчет положения препятствий относительно транспортного средства и желаемой реакции искусственного интеллекта. Аппроксимация функций с областями значений, которые могут иметь несколько измерений - особенность нейронной сети обратного распространения.
статья, добавлен 02.06.2021Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.
статья, добавлен 17.07.2013- 83. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Изучение биологических аналогов изучаемых нейронных сетей. Разбор задачи воссоздания перцептрона. Принципы обучения нейронной сети. Моделирование программ, показывающих работу перцептрона. Синапс и алгоритм передачи информационного сигнала в сети.
реферат, добавлен 22.03.2019Рассмотрение задачи фильтрации спама и наиболее распространенных подходов к ее решению в сравнении с методами искусственного интеллекта. Развитие средств защиты от спама. Решение задачи защиты от спама на основе списка адресов, сигнатур, теоремы Байеса.
статья, добавлен 19.05.2018Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.
курсовая работа, добавлен 26.06.2011Генерирование псевдослучайных чисел. Линейный конгруэнтный метод, алгоритм Фибоначчи с запаздываниями и метод Блюма. Генерирование псевдослучайных чисел классом Random в С++. Метод середины квадрата. Постановка задачи, разработка и кодирование алгоритма.
курсовая работа, добавлен 14.05.2015Построение и обучение нейронных сетей, которые смогут обучиться для успешного прохождения компьютерных игр. Эволюционный и генетический алгоритмы обучения нейронной сети. Сравнительный анализ самообучающихся алгоритмов на основе платформы OpenAI.
дипломная работа, добавлен 01.09.2017Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.
статья, добавлен 30.05.2017Обзор решений в области разработки идентификационных систем. Способы хранения данных. Методы искусственного интеллекта и алгоритмы распознавания лиц. Архитектура веб-приложения. Процесс обработки фотографии. Особенности реализации программной системы.
дипломная работа, добавлен 28.10.2019Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009Разработка матричных аналогов существующих нейросетевых подходов. Учет пространственных связей мультимедийной информации и сокращение времени, необходимого на обработку информации за счет введения новой матричной процедуры обучения нейронной сети.
статья, добавлен 01.03.2017- 95. Интелектуальная мультиагентная система сбора и анализа данных для моделей знаний предметных областей
Методы построения мультиагентной системы посредством логической оценки получаемых данных. Построение нейронной сети с нейронами, обладающими памятью и интегральной логикой. Реализация логики на основе генетического алгоритма совершенствования "генов".
статья, добавлен 13.01.2017 Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.
лабораторная работа, добавлен 14.12.2019Распознавание образов при помощи нейросетевых технологий. Алгоритм обучения сети Хопфилда. Вычисление квадратной матрицы размера для ключевых образов по правилу Хебба. Отсутствие проблем с обучением при наличии априорной информации о классах объектов.
статья, добавлен 08.06.2018- 98. Метод буферизации запросов на передачу потоков реального времени по каналу телекоммуникационной сети
Разработка метода буферизации. Прогнозирование параметров сетевого трафика. Выбор рационального значения емкости памяти для буферизации запросов на передачу потоков реального времени по каналу телекоммуникационной сети. Построение нечеткой нейронной сети.
статья, добавлен 14.07.2016 - 99. Система обработки изображений при диагностике наследственных заболеваний по методу дерматоглифики
Алгоритмы компьютерной обработки изображений, позволяющие существенно повысить скорость проведения диагностики сахарного диабета на основе дерматоглифического исследования. Элементы программного обеспечения системы. Результат обучения нейронной сети.
автореферат, добавлен 02.07.2018 Использование видеокамер для идентификации персонала. Структурная схема программного модуля по распознаванию лиц. Разработка биометрических приложений на основе искусственного интеллекта. Применение нейронных сетей в охранных системах и криминалистике.
статья, добавлен 11.12.2024