Технология нейронной стилизации изображений с помощью машинного и глубокого обучения: методы и применение
Появление и перспективы использования технологии нейронной стилизации. Типологизация методов машинного обучения для стилизации изображений. Рассмотрение реализации стилизации изображений с помощью машинного и глубокого обучений на языке Python.
Подобные документы
Возможность применения машинного обучения при классификации спама. Структура файла "spam". Программный код использования библиотеки pandas, перевода категориальных признаков в числовые. Код тестирования различного количества нейронов, его анализ.
статья, добавлен 17.02.2019Описана информационная технология машинного обучения для выявления обфусцированных текстов, которыми обмениваются участники виртуальных социальных сетей при ведении ими противоправной деятельности. Эффективность использования рассматриваемой технологии.
статья, добавлен 01.02.2019Сбор и агрегация исторических данных о регулярных рейсах авиакомпаний. Особенность создания модели машинного обучения для предсказания вероятности отмены маршрута. Характеристика формирования ИТ-сервиса для предоставления доступа к предиктивной модели.
дипломная работа, добавлен 09.08.2018Специфические особенности алгоритма расчета порога бинаризации для полутонового изображения, реализованного на основе метода Оцу. Использование технологии искусственной нейронной сети для распознавания цифровых микроскопических изображений мокроты.
статья, добавлен 31.10.2017Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.
статья, добавлен 26.04.2019Знакомство с основными проблемами автоматизированного формирования сценариев, описывающих поведение вредоносных программ. Рассмотрение особенностей и способов применения методов машинного обучения для формирования сценариев поведения вредоносных программ.
статья, добавлен 28.08.2016Понятие машинного перевода как процесса перевода текстов (письменных, а в идеале и устных) с одного естественного языка на другой с помощью специальной компьютерной программы. Место машинного перевода в общей классификации, его краткая характеристика.
реферат, добавлен 27.05.2014Сравнительный анализ алгебр изображений, алгебраических методов, применимых к анализу изображений. Построение специализированных версий ДАИ. Алгоритмические схемы анализа изображений. Применение дескриптивных алгебр для исследования операндов и операций.
автореферат, добавлен 31.07.2018Описание анализа систем распознавания эмоций с применением методов машинного обучения, находящихся в открытом доступе, в рамках курсового проекта по дисциплине Обучающие Технические Системы "Machine Learning". Neurobotics EmoDetect. Cognitive Emotion.
статья, добавлен 14.03.2019Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020Построение формализованного представления области "Анализ изображений". Разработка метода использования тезаурусов и онтологий при решении задач анализа изображений. Применение математических методов распознавания образов, структурной лингвистики.
автореферат, добавлен 31.07.2018Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Разработка и анализ работы алгоритмов для анализа тональности агрессивных комментариев, автоматического определения их эмоционального окраса. Реализация классифицирующих моделей машинного обучения, оценка их качества и сравнение их эффективности.
дипломная работа, добавлен 10.12.2019Применение автоматизированного системно-когнитивного анализа, математической модели для оцифровки изображений из графических файлов и создания обобщенных образов жужелиц на базе изображений входящих в них видов. Система "Эйдос" для обработки изображений.
статья, добавлен 25.05.2017Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.
дипломная работа, добавлен 30.07.2016Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.
статья, добавлен 30.06.2020Основы машинного обучения на компьютерных программах и алгоритмах, которые самостоятельно обучаются адаптироваться и расти при подаче новых данных. Вкладывание в отдельную программу/компьютер алгоритмов поиска решений, использующих данные статистики.
статья, добавлен 23.02.2025Сравнение методов сегментации изображений применительно к снимкам фиброгастродуоденоскопического исследования. Исследование методов предварительной фильтрации изображений для использования алгоритмов сегментации. Анализ точности распознавания патологии.
статья, добавлен 01.07.2018Алгоритм комплекса программ исследования цифровых изображений. Типы растровых изображений: бинарные, полутоновые, палитровые и полноцветные. Построение полноцветных изображений в формате RGB. Сущность бинаризации изображения, работа с пикселями.
курсовая работа, добавлен 18.01.2016Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012- 46. Обращение операторов в нелинейной теории оболочек с помощью нейронной сети и генетического алгоритма
Применение нейронной сети для идентификации функции нагрузки тонкостенной оболочки по результатам наблюдений. Обоснование возможности аппроксимации зависимости между результатами наблюдений и неизвестными функциями обратных задач с помощью нейронной сети.
статья, добавлен 27.09.2016 Применение СУБД для обработки большого объема данных в современных проектах машинного обучения и анализа данных. Анализ огромных объемов информации, используемых в данных приложениях. Обеспечение эффективной интеграции с приложениями и ресурсами данных.
статья, добавлен 14.12.2024Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Обзор и классификация существующих систем машинного перевода. Состав логических блоков систем, история развития машинного перевода. Рассмотрение места системы машинного перевода "Кросслятор 2.0" среди современных систем автоматической обработки текстов.
статья, добавлен 28.10.2018Разработка метода компрессии для трехмерных изображений, отличающегося от известных тем, что учитывает особенности получения цифровых трехмерных изображений с помощью анализа таблицы текстурных координат. Поддержка поиска необходимых элементов в таблице.
статья, добавлен 30.04.2018