Теоремы о неподвижных точках и их применения

Доказательства классических теорем о неподвижных точках (в том числе и в бесконечномерном случае), их применения в теории дифференциальных уравнений. Сущность теоремы Банаха о сжатии полных метрических пространств, вычисление теоремы Брауэра для круга.

Подобные документы

  • Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).

    статья, добавлен 26.04.2019

  • Ознакомление с первоначальной и современной формулировами теоремы Пифагоа. Представление наиболее простого, алгебраического, геометрического и Евклидового методов доказательств теоремы. Определение значения данной теоремы в математических науках.

    презентация, добавлен 15.03.2011

  • Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.

    реферат, добавлен 15.06.2010

  • Значение теоремы Дж. Чевы и Менелая в золотом фонде древнегреческой математики. Сравнительный анализ в эффективности применение этих теорем по сравнению с другими способами решения планиметрических задач. Доказательство теоремы о биссектрисе угла.

    контрольная работа, добавлен 30.09.2013

  • Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.

    курсовая работа, добавлен 26.02.2020

  • Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.

    доклад, добавлен 23.08.2013

  • Геометрия как одна из наиболее древних математических наук, возникновения и развитие знаний в данной сфере, современные достижения. Сущность и содержание теорем Чевы и Менелая, эффективность и целесообразность их применения теорем при решении задач.

    научная работа, добавлен 03.05.2019

  • Место теоремы Пифагора в школьном курсе геометрии. Прямоугольный треугольник и его особенные свойства. Расчет катетов и гипотенузы. Квадрат, построенный на гипотенузе прямоугольного треугольника. Рассмотрение некоторых доказательств теоремы Пифагора.

    статья, добавлен 05.05.2019

  • Теорема Фалеса - одна из теорем планиметрии. Доказательство обобщенной теоремы (параллельные прямые отсекают на секущих пропорциональные отрезки). Другие геометрические теоремы, доказанные ученым. Их практическое использование при измерении расстояний.

    презентация, добавлен 20.09.2012

  • Биография греческого ученого, происхождение теоремы Пифагора, способы ее доказательства разными народами (древнекитайский, индусский, Евклидом) и значение для современной геометрии. Особенности соотношения размера сторон треугольника и его гипотенузы.

    реферат, добавлен 21.01.2015

  • Ознакомление с историей доказательства теоремы Ферма. Исследование и анализ особенностей равенства для трёх действительных целых положительных чисел. Рассмотрение и характеристика преобразования уравнения, позволяющего получить квадратное уравнение.

    статья, добавлен 01.10.2015

  • Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.

    презентация, добавлен 17.09.2013

  • Стохастическая версия W-метода, который восходит к работам Азбелева. Теоремы, которые можно рассматривать как фундамент общей схемы анализа устойчивости линейных стохастических функционально-дифференциальных уравнений. Пример скалярного уравнения Ито.

    статья, добавлен 26.04.2019

  • Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.

    реферат, добавлен 30.03.2017

  • Методика определения переносного ускорения, показатели и коэффициенты, используемые для его описания. Порядок вывода и доказательства теоремы Кориолиса. Расчет абсолютного ускорения. Матричная форма исследуемой теоремы в подвижной системе координат.

    лекция, добавлен 15.03.2015

  • Изучение прямых изоклин системы дифференциальных уравнений. Главные способы разбиения множества изоклин, теоремы и доказательства. Нахождение параллельных между собой прямых изоклин системы. Квадратичная дифференциальная система, её состояния равновесия.

    статья, добавлен 27.09.2013

  • Знакомство с особенностями традиционного доказательства теоремы Кантора. Характеристика логической схемы канторовского RAA-доказательства. Рассмотрение примеров применения КП-метода в классической математике. Сущность понятия "математическая интуиция".

    статья, добавлен 27.02.2019

  • Описание доказательства теоремы Хоукинга, согласно которой в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Особенности этапов решения данной теоремы путем разложения прямоугольного треугольника на два равнобедренных.

    задача, добавлен 23.02.2011

  • Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.

    лекция, добавлен 26.03.2012

  • Биография Пифагора, история открытия и различные формулировки его теоремы. Характеристика способов доказательства, особенности геометрических и алгебраических методов. Значение теоремы Пифагора и ее применение. Практикум по решению задач школьного курса.

    курсовая работа, добавлен 30.03.2013

  • Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.

    курсовая работа, добавлен 13.11.2013

  • Исследование значения теоремы Пифагора в геометрии. Характеристика классических доказательств теоремы Пифагора, известных из древних трактатов. Определение стороны прямоугольного треугольника по двум другим сторонам. Теорема существования площади фигуры.

    реферат, добавлен 21.01.2015

  • Первые учителя Пифагора. Учреждение пифагорейской школы. Идеалистическое учение в античной философии. Числа у пифагорейцев. Открытие теоремы Пифагором. Классические доказательства теоремы Пифагора. Математические трактаты Древнего Китая и Древней Индии.

    реферат, добавлен 09.12.2011

  • Великая теорема Ферма как одна из самых популярных теорем математики, условие которой, формулируется на понятийном уровне среднего общего образования. Полное доказательство теоремы "элементарным" методом, которое ранее было утеряно более 300 лет назад.

    задача, добавлен 17.08.2011

  • Системы дифференциальных уравнений. Непрерывно дифференцируемые или абсолютно непрерывные функции. Математическое описание управляемой системы с обратной связью. Теоремы существования решений для дифференциальных включений в конечномерном пространстве.

    контрольная работа, добавлен 03.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.