Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами

Простейшие свойства модулей непрерывности высших порядков. Обобщение теоремы Джексона, неравенства С.Н. Бернштейна, обратных теорем теории приближения. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную непрерывную функцию.

Подобные документы

  • Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.

    презентация, добавлен 18.09.2013

  • Методика введения определений тригонометрических функций углов и изучения тригонометрических функций в курсе алгебры. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению.

    реферат, добавлен 06.03.2022

  • Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.

    курс лекций, добавлен 23.10.2013

  • Определение синуса, косинуса, тангенса и котангенса действительного числа. Основные свойства и графики тригонометрических функций. Формирование графической симметрии относительно начала координат. Характеристика множества значений переменной величины.

    лекция, добавлен 12.10.2015

  • Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Нахождение площади плоской фигуры. Существование определённого интеграла. Дифференциальные уравнения.

    контрольная работа, добавлен 30.01.2012

  • Особливості прямих та обернених теорем теорії наближень. Визначення аналогів нерівностей Джексона і Бернштейна. Оцінка похибки наближених розв’язків задачі Коші для диференціально-операторних рівнянь методом Келі. Побудова векторів експоненціального типу.

    автореферат, добавлен 28.09.2015

  • Вид дифференциального уравнения, разрешимого относительно старшей производной, его решение (функция у(х), которая обращает его в тождество). Формулировка теоремы Коши, утверждающей существование частного решения системы, ее геометрический смысл.

    презентация, добавлен 17.09.2013

  • Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.

    лекция, добавлен 26.08.2015

  • Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.

    статья, добавлен 30.10.2016

  • Построение математических моделей негауссовых случайных процессов. Получение необходимых уточнений (моментов высших порядков) к корреляционному приближению. Исследование и анализ преобразований процессов при помощи операции интегрального осреднения.

    автореферат, добавлен 10.08.2018

  • Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.

    реферат, добавлен 13.06.2015

  • Меры измерения углов: градусная, радианная. Понятие тангенса, косинуса, синуса, арктангенса и котангенса, их геометрический смысл. Графики тригонометрических и обратных тригонометрических функций. Основные тригонометрические тождества и следствия из них.

    лекция, добавлен 18.04.2012

  • Исследование интерполирования функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции. Полиноминальная интерполяция. Интерполяционный полином Лагранжа. Представление гладкой функции.

    курсовая работа, добавлен 22.04.2011

  • Частичные полукольца непрерывных функций на топологических пространствах X со значениями в полукольце [0, ∞] рассматриваемом с обычной топологией. Максимальные идеалы и основополагающие свойства простых идеалов. Применение соответствий полуколец.

    статья, добавлен 26.04.2019

  • Практическое применение чебышевских приближений в различных областях математики и инженерных расчетах. Алгоритмы точного и приближенного построения экстремальных полиномов для функций действительного и комплексного аргумента, их модификации и обобщения.

    автореферат, добавлен 19.08.2018

  • Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.

    презентация, добавлен 18.09.2013

  • Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.

    контрольная работа, добавлен 26.05.2014

  • Дифференциал суммы, произведения и частного. Абсолютная погрешность приближенной величины. Понятие производной n-го порядка функции. Вывод правила дифференцирования неявных функций. Дифференцирование параметрически заданных функций, пример уравнений.

    лекция, добавлен 22.01.2013

  • Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.

    контрольная работа, добавлен 17.12.2013

  • Понятие, свойства, графики элементарных функций. Характеристика степенной, квадратичной, показательной, логарифмической функций. Математическое описание обратно пропорциональной зависимости. Особенности графического изображения тригонометрических функций.

    реферат, добавлен 17.06.2014

  • Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.

    учебное пособие, добавлен 25.11.2013

  • Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.

    статья, добавлен 09.05.2021

  • Анализ понятия и свойств непрерывных функций. Характеристика непрерывности некоторых элементарных функций. Классификация точек разрыва. Описание непрерывности функции в точке, на интервале и отрезке. Анализ экономического смысла непрерывной функции.

    курсовая работа, добавлен 07.04.2016

  • Определение Бохнера для однозначной почти-периодической функции. Описание диагональной последовательности функций. Невозможность выбора равномерно сходящейся подпоследовательности. Доказательство теоремы о сумме многозначных почти-периодических функций.

    статья, добавлен 26.01.2018

  • Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.

    книга, добавлен 19.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.