Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами

Простейшие свойства модулей непрерывности высших порядков. Обобщение теоремы Джексона, неравенства С.Н. Бернштейна, обратных теорем теории приближения. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную непрерывную функцию.

Подобные документы

  • Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.

    практическая работа, добавлен 07.09.2016

  • Определение понятия дифференциала n-го порядка. Исследование основных способов вычисления дифференциалов высших порядков. Нахождение дифференциала высшего порядка функции одной и нескольких переменных. Неинвариантность дифференциалов высшего порядка.

    презентация, добавлен 21.09.2013

  • Определение и свойства многогранников: призмы, параллелепипеда и пирамиды. Важнейшие теоремы общей теории выпуклых многогранников. Правила нахождения площади и объема поверхности многогранников. Понятие, свойства и число правильных многогранников.

    реферат, добавлен 26.05.2012

  • Выбор аппроксимирующих функций в зависимости от условия задачи. Построение графиков функций: исходной, полученных аппроксимирующих и зависимостей погрешностей. Проведение контрольных расчетов с помощью системы Mathcad для всех методов аппроксимации.

    курсовая работа, добавлен 23.12.2014

  • Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.

    курсовая работа, добавлен 13.11.2013

  • Непрерывность функции в точке и на множестве. Точки разрыва функции и их классификация. Действия над непрерывными функциями. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке, равномерная непрерывность функции.

    лекция, добавлен 10.02.2016

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

  • Суть метода нахождения обратных функций. Основные пути построения таких обратных функций как логарифм, гиперболические и тригонометрические арксинус и арккосинус. Примеры построения обратных функций для гиперкомплексной числовой системы 4-го порядка.

    статья, добавлен 29.01.2019

  • Поиск экстремума функции одной и нескольких переменных. Интерполяция функций интерполяционными полиномами, способы их вычисления и анализ сходимости (по классическому примеру Рунге). Определение ошибки интерполяции. Построение графиков полиномов Чебышева.

    презентация, добавлен 21.09.2013

  • Понятие случайной величины в статистическом анализе, дискретные и непрерывные случайные величины. Свойства дифференциальной функции распределения вероятностей. Статистические функции непрерывных распределений. Изучение в Microsoft Excel данных функций.

    курсовая работа, добавлен 06.10.2011

  • Операции над множествами. Свойства функции одной переменной. Основные теоремы о пределах. Производная функции одной переменной. Дифференциал функции. Применение производной. Действия над комплексными числами. Интегрирование тригонометрических выражений.

    курс лекций, добавлен 28.06.2014

  • Понятие функций одной переменной, их классификация и разновидности, отличительные особенности и структура. Принципы преобразования графиков. Предел функции на бесконечности и в точке, анализ основных теорем. Непрерывность функции. Типы точек разлома.

    лекция, добавлен 19.02.2018

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Формулировки определений и теорем. Преобразование алгебраических и тригонометрических выражений в технике дифференцирования и интегрирования. Элементы эвристики по Пойа в доказательствах теорем и решениях задач геометрии и математического анализа.

    статья, добавлен 09.11.2018

  • Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.

    курс лекций, добавлен 10.06.2015

  • Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.

    курс лекций, добавлен 07.03.2015

  • Множество действительных чисел. Действия над комплексными числами в алгебраической форме. Четность, нечетность, монотонность, периодичность функции. Теоремы о пределах, формулы, свойства логарифмов. Радианная и градусная меры углов. Периодические функции.

    шпаргалка, добавлен 04.05.2011

  • Понятие о тригонометрическом выражении. Тригонометрические функции и формулы тригонометрии, используемые для преобразования тригонометрических выражений. Знаки тригонометрических функций. Примеры решения задач с использованием формул преобразования.

    презентация, добавлен 23.10.2013

  • Фазовые пространства. Векторные поля на прямой. Методы решения линейных уравнений. Действие диффеоморфизмов на векторные поля и на поля направлений. Теоремы о выпрямлении. Консервативная система с одной степенью свободы. Свойства, определитель экспоненты.

    учебное пособие, добавлен 24.09.2012

  • Формульное выражение и свойства бесконечно малых функций, распространяемых на случаи алгебраической суммы конечного числа. Методы вычисления бесконечно больших величин. Изучение теоремы о пределах. Способы подстановки предельного значения аргумента.

    лекция, добавлен 07.07.2015

  • Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.

    контрольная работа, добавлен 22.12.2015

  • Свойства трисектрисс углов треугольников. Теоремы, раскрывающие неизвестные свойства лучей, исходящих из заданной точки под постоянным углом. Выполнение эскизных работ по проективной геометрии. Применение в ходе геодезического сопровождения строительства.

    статья, добавлен 27.01.2019

  • Подгруппы и факторгруппы групп с операторами. Теоремы о гомоморфизмах. Содержание и принципы реализации теорем Шура – Цассенхауза и Фейта – Томпсона. Понятие и содержание, свойства обобщенной подгруппы Фраттини. Расширения посредством автоморфизмов.

    курсовая работа, добавлен 08.01.2013

  • Полиномы Лежандра и Чебышева: отогональность полиномов и их формирование. Ортогональная система функций, построенная на основе полиномов Чебышева, нормирование системы функций, построенной на их основе. Примеры аппроксимации функций в среде MathCad'а.

    курсовая работа, добавлен 09.06.2012

  • Значение теоремы Дж. Чевы и Менелая в золотом фонде древнегреческой математики. Сравнительный анализ в эффективности применение этих теорем по сравнению с другими способами решения планиметрических задач. Доказательство теоремы о биссектрисе угла.

    контрольная работа, добавлен 30.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.