Системы дифференциальных уравнений с обобщенными коэффициентами в прямом произведении алгебр мнемофункций

Описание ассоциированных решений задачи Коши для систем уравнений в дифференциалах, соответствующих системам уравнений с разрывной и обобщенной правыми частями. Решение этой задачи для соответствующих им систем в прямом произведении алгебр мнемофункций.

Подобные документы

  • Рассмотрение начальной задачи для систем уравнений и использование развитой методики дополнительного аргумента для решения задачи. Применение развитой методики для доказательства существования решения новых видов векторно-матричных нелинейных уравнений.

    статья, добавлен 07.08.2020

  • Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.

    контрольная работа, добавлен 23.04.2011

  • Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.

    презентация, добавлен 06.12.2011

  • Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.

    практическая работа, добавлен 22.10.2019

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.

    контрольная работа, добавлен 29.11.2015

  • Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.

    курсовая работа, добавлен 05.06.2014

  • Решение задачи численным методом с помощью системы линейных уравнений. Перестановка неизвестных в системе уравнений. Столбцы фундаментальной матрицы. Фундаментальная система решений. Определение ранга матрицы. Приведение матрицы к трапециедальному виду.

    контрольная работа, добавлен 02.05.2019

  • Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.

    статья, добавлен 07.08.2020

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.

    реферат, добавлен 29.11.2015

  • Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.

    контрольная работа, добавлен 09.07.2015

  • Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.

    курс лекций, добавлен 26.09.2017

  • Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.

    презентация, добавлен 26.09.2017

  • Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.

    реферат, добавлен 27.10.2019

  • Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.

    курс лекций, добавлен 11.10.2014

  • Обыкновенное дифференциальное уравнение как тождество, связывающее между собой значения независимой переменной, функции и её производных. Методика вычисления задачи Коши. Характеристика основных типов уравнений, которые допускают понижение порядка.

    презентация, добавлен 05.02.2015

  • Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.

    доклад, добавлен 29.04.2021

  • Разработка метода исследования дифференциальных уравнений с-образными коэффициентами с помощью аппроксимирующих семейств операторов, являющихся возмущениями исходного оператора. Применение теории к исследованию уравнений с-образными коэффициентами.

    автореферат, добавлен 18.08.2018

  • Разработка математических моделей эксплуатационной и интерференционной конкуренций на линейном ареале на базе систем уравнений с распределенными параметрами. Построение численного решения краевой задачи для системы нелинейных дифференциальных уравнений.

    статья, добавлен 07.08.2020

  • Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.

    статья, добавлен 14.07.2016

  • Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.

    курсовая работа, добавлен 04.11.2012

  • Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.

    дипломная работа, добавлен 06.03.2016

  • Новые признаки разрешимости квазилинейных краевых задач для абстрактных функционально-дифференциальных уравнений с необратимой линейной частью и систем квазилинейных операторных уравнений. Разрешимость задач для уравнения с отклоняющимся аргументом.

    автореферат, добавлен 17.12.2017

  • Анализ результатов тестирования численного метода решения систем дифференциальных уравнений с задержанным аргументом, описывающих системы с хаотической динамикой, в пакете MatLab. Оценка фактической ошибки численного решения тестовой системы уравнений.

    статья, добавлен 27.04.2019

  • Формулировка проблемы достижения условия непрерывности G и описание соответствующих уравнений для решения этой задачи. Функционалы "сдвиг кривой" и Квази-G1. Решение вариационных задач без ограничений в соответствии с теоремой Ферма, описание алгоритма.

    статья, добавлен 21.06.2018

  • Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.

    курсовая работа, добавлен 25.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.