Системы дифференциальных уравнений с обобщенными коэффициентами в прямом произведении алгебр мнемофункций
Описание ассоциированных решений задачи Коши для систем уравнений в дифференциалах, соответствующих системам уравнений с разрывной и обобщенной правыми частями. Решение этой задачи для соответствующих им систем в прямом произведении алгебр мнемофункций.
Подобные документы
- 101. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.
курсовая работа, добавлен 13.11.2013Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
курсовая работа, добавлен 19.01.2016Алгебраическое дополнение элемента в определителе матрицы. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными. Вычисление предела функции. Использование правила Лопиталя для устранения неопределенности.
контрольная работа, добавлен 25.03.2014Преобразование и объединение групп общих решений тригонометрических уравнений. Решение уравнений с применением формул тройного аргумента или понижения степени. Функциональные методы решения тригонометрических и комбинированных уравнений, отбор корней.
реферат, добавлен 09.09.2016Сущность построения математической модели экономического процесса. Геометрическое истолкование дифференциального уравнения. Задача Коши. Общие свойства решений линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами.
курсовая работа, добавлен 17.01.2011Определение псевдопараболических уравнений по характеру свойств решений. Решение задачи сопряжения для псевдопараболических уравнений третьего порядка с использованием тождества Лагранжа, функций Грина и Римана. Определение условий разрешимости уравнения.
статья, добавлен 18.05.2016Сущность эредитарного осциллятора. Обоснование задачи Коши для специального класса интегро-дифференциальных уравнений с разностными ядрами в виде степенных функций. Уравнение для описания широкого класса фрактальных осцилляторов, осцилляторов с памятью.
статья, добавлен 12.05.2018Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.
курсовая работа, добавлен 06.04.2014- 110. Метод Гаусса
Решение систем линейных алгебраических уравнений. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений по методу Гаусса и по методу Зейделя. Ограниченность оперативной памяти ЭВМ. Решение систем большой размерности.
курсовая работа, добавлен 28.01.2012 Разработка методики получения приближенных аналитических решений исходных дифференциальных уравнений пограничных слоев, позволяющей получать решения практически с заданной степенью точности. Условия использования уравнений Прандтля и Польгаузена.
статья, добавлен 31.08.2018Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.
контрольная работа, добавлен 01.04.2015Рассмотрение решения уравнений с двумя переменными, систем уравнений, методов решения систем, таких как метод подстановки, сложения, графический, метод введения новых переменных, определителей второго и третьего порядков и теоремы Кронекера-Капеллы.
научная работа, добавлен 25.02.2014Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.
курс лекций, добавлен 19.09.2015Заключение фиктивного брака для поступления в университет С. Ковалевской. Проведение исследования равновесия кольца Сатурна. Анализ изучения существования аналитического решения задачи Коши для систем дифференциальных уравнений с частными производными.
презентация, добавлен 21.11.2016Главные и свободные неизвестные, входящие в выбранный минор. Использование правила Крамера. Частное решение системы. Пример решения системы линейных уравнений. Применение метода Гаусса (последовательного исключения переменных). Сравнение рангов матриц.
лекция, добавлен 26.01.2014Назначение, области применения, достоинства и недостатки компьютерной системы для персонального компьютера Mathematica. Введение данных и решение дифференциальных уравнений Абеля и Дарбу математически, в аналитической форме, в системе Mathematica.
курсовая работа, добавлен 04.08.2012Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
контрольная работа, добавлен 13.08.2014Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013Характеристика определителя Вронского: определение, общая теория, свойства, примеры применения. Интегрирование неоднородных систем дифференциальных уравнений методом вариации произвольных постоянных: определения, общая теория метода, решение примеров.
курсовая работа, добавлен 22.04.2011Способ построения бикомпактных разностных схем четвертого порядка аппроксимации по пространственной переменной на минимальном (двухточечном) шаблоне для уравнений и систем уравнений гиперболического типа. Схема сквозного расчета разрывных решений.
автореферат, добавлен 25.07.2018Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Рассмотрение условий и конкретных типов задач, при которых знание собственных значений характеристического полинома при решении линейных дифференциальных уравнений не является обязательным. Периодическая переходная функция при периодическом воздействии.
статья, добавлен 21.09.2016- 124. Основы математики
Принцип Даламбера для рядов и двойных интегралов. Расчет радиуса сходимости степенного ряда. Задача Коши для дифференциальных уравнений. Линейная алгебра и аналитическая геометрия. Обратная матрица системы уравнений с использованием формулы Крамера.
контрольная работа, добавлен 26.02.2012 Способы решения уравнений, содержащих модуль. Использование геометрической интерпритации модуля для решения уравнений. Графики простейших функций, содержащих знак абсолютной величины. Доказательство теорем, определение, решение нестандартных уравнений.
реферат, добавлен 06.03.2010