Ряды Фурье. Интеграл Фурье. Суммирование расходящихся рядов
Тригонометрический ряд Фурье и его основные свойства. Сущность теоремы Римана–Лебега. Сдвиг и растяжение основного промежутка. Гармонический анализ непериодических функций. Метод средних арифметических и метод Чезаро. Ряд теорем Карла Вейерштрасса.
Подобные документы
Комплексная форма интеграла Фурье. Оригинал и изображение в преобразовании Лапласа. Доказывание теоремы дифференцирования оригинала методом математической индукции. Применение элементарных методов при разложении правильной дроби на сумму простейших.
курсовая работа, добавлен 25.03.2014Условия разложения функций в ряды Фурье по классическим ортогональным многочленам. Формулировка и доказательство аналогов леммы М.В. Федорюка. Вывод асимптотических формул для многочленов Чебышева-Эрмита, Якоби, Лежандра-Лагерра и их производных.
автореферат, добавлен 10.12.2013Алгоритмы цифровой обработки сигналов. Эквивалентная запись, базисные синусоиды. Комплексное, двумерное дискретное преобразование Фурье, тождества Эйлера. Сигнал и его спектр. Ортогональность функций. Реконструкция сигнала по ограниченному ряду.
реферат, добавлен 18.03.2015- 29. Интеграл Лебега
Понятие интеграла Лебега от ограниченной функции как обобщения интеграла Римана на более широкий класс функций, его характеристика и свойства, направления исследования и анализа, история построения. Класс интегрируемых по Лебегу ограниченных функций.
реферат, добавлен 09.04.2013 Анализ новых формул преобразования Фурье по собственным функциям задачи Штурма-Лиувилля со смешанным спектром. Методы решения задач математической физики: колебание составного четвертьпространства, теплопроводность анизотропной многолистной пластины.
статья, добавлен 27.07.2016Исследование первой краевой задачи для уравнения в частных производных второго порядка с отклоняющимся аргументом. Доказательство существования и единственности задачи. Применение метода Фурье для доказательства теоремы. Значение задачи Штурма-Лиувилля.
статья, добавлен 29.04.2017Исследование периодической функции, ее разложение в ряд Фурье. Вычисление значений тригонометрических полиномов в заданных точках. Построение графика многочлена третьей и восьмой степени. Определение погрешностей и расчет среднеквадратичных коэффициентов.
задача, добавлен 23.11.2016Модуль комплексной амплитуды как линейчатый спектр периодической функции. Связь между спектрами дискретизированного и непрерывного сигналов. Быстрое преобразование Фурье с прореживанием по времени. Определение числа итераций алгоритма, расчет множителя.
курсовая работа, добавлен 21.06.2019Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.
учебное пособие, добавлен 18.06.2015Определение функции нескольких переменных. Дифференциальные уравнения первого и высших порядков. Основные теоремы операционного исчисления (преобразования Лапласа). Числовые и знакоположительные ряды. Разложение в ряд Фурье четных и нечетных функций.
курс лекций, добавлен 18.02.2012Объяснение работы быстрого преобразования Фурье и исследование специфики реализации на программируемых логических интегральных схемах. Особенности и принципы его реализации реализуется в основном с помощью цифровой программной обработки сигналов.
статья, добавлен 10.08.2018Исследование приложения двойных, тройных интегралов в пространстве, разложение функции в ряд Фурье, а также отыскание наибольшего и наименьшего значений функции в этой области, и решение задачи линейного программирования геометрическим и симплекс методом.
курсовая работа, добавлен 24.04.2011Рассмотрение плоского волнового фронта, ограниченного апертурой кадрового окна. Оценка операции абстрактного сложения. Исследование особенностей реализации нечетких логик методом Фурье-голографии. Определение интерпретации смысла логического заключения.
статья, добавлен 19.01.2018Особенности использования преобразования Меллина и теорию вычетов. Метод Галеркина как запись исходных дифференциальных уравнений в слабой форме. Амплитудные функции ряда Фурье. Пример расчета показателей сингулярности в вершине анизотропного конуса.
статья, добавлен 02.11.2018Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.
курсовая работа, добавлен 24.04.2011Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.
лекция, добавлен 18.05.2010Изучение математического дискретного преобразования Фурье периодических последовательностей и последовательностей конечной длины. Овладение программными средствами его вычисления в MATLAB с использованием алгоритмов быстрого преобразования Фурье.
лабораторная работа, добавлен 18.10.2021Обыкновенные дифференциальные уравнения, их характеристика и свойства. Типы уравнений с разделяющимися переменными, их структура и требования к решению. Достаточные признаки разложимости в ряд Фурье, порядок определения интегралов. Теорема Ляпунова.
курс лекций, добавлен 05.03.2016- 44. Интеграл Римана
Основные свойства множества числовых последовательностей вещественных чисел. Интеграл Лебега и его особенности. Характеристика главных аспектов интеграла. Анализ классов нормированных пространств. Изучение связи между различными типами сходимости.
реферат, добавлен 19.02.2014 Обзор прямого преобразования Фурье. Типичное изображение спектра непериодического сигнала. Изучение примеров определения спектра временных функций. Исследование особенностей прямого преобразования Лапласа. Получение изображения для импульсных функций.
лекция, добавлен 23.07.2015Основные понятия интегральных уравнений. Понятие интегральных преобразований и их таблица, преобразование Фурье, Лапласа и Меллина и их применение к решению интегральных уравнений. Преобразование Фурье и её применение к решению некоторых интегральных урав
дипломная работа, добавлен 29.04.2024История возникновения понятия функции, его исследования ученым Лейбницем. Сущность задачи о колебании струны, ее проблематика решения. Характеристика и основные возможности открытия Фурье. Сущность функционала и оператора, их главные задачи и принципы.
доклад, добавлен 29.10.2013- 48. Интегралы и ряды
Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.
методичка, добавлен 06.08.2015 Понятия и свойства функции. Исследование функции на четность и нечетность. Теория степенных рядов и рядов Фурье. Практический смысл утверждений о связи возрастания и убывания со знаком производной. Симметричность функций относительно осей координат.
контрольная работа, добавлен 12.03.2013Понятие дифференциального уравнения в частных производных. Особенности порядка старшего производного, его свойства. Уравнение математической физики с постоянными коэффициентами в случае двух переменных. Характеристика и расчет уравнения Лапласа и Фурье.
практическая работа, добавлен 18.10.2013