Ряды Фурье. Интеграл Фурье. Суммирование расходящихся рядов

Тригонометрический ряд Фурье и его основные свойства. Сущность теоремы Римана–Лебега. Сдвиг и растяжение основного промежутка. Гармонический анализ непериодических функций. Метод средних арифметических и метод Чезаро. Ряд теорем Карла Вейерштрасса.

Подобные документы

  • Задача нахождения точных констант методами суммирования рядов Фурье, ее анализ для совокупности аппроксимирующих последовательностей, которые называют тригонометрическими операторами Баскакова. Рассмотрение некоторых частных случаев данной задачи.

    статья, добавлен 31.05.2013

  • Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.

    автореферат, добавлен 12.05.2014

  • Вейвлет-анализ как альтернатива преобразованию Фурье для исследования временных (пространственных) рядов с выраженной неоднородностью. Применение семейства анализирующих функций, называемых вейвлетами, для изучения и анализа изображений различной природы.

    статья, добавлен 08.12.2018

  • Изучение античной греческой математики. Построение качественных, линейных количественных и нелинейных количественных моделей. Процесс структуризации данных. Уточнения и приближения. Корреляция и каузация. Аппроксимация функции конечным рядом Фурье.

    контрольная работа, добавлен 29.10.2021

  • Определенный интеграл по Риману. Теоремы о существовании интеграла от непрерывной и монотонной функции. Неравенства и теорема о среднем. Приближенное вычисление определенных интегралов. Метод параболических трапеций (метод Симпсона). Суть числовых рядов.

    контрольная работа, добавлен 20.02.2012

  • Особенность междисциплинарных связей между дисциплиной математика и сопротивлением материалов на примере решения дифференциального уравнения балки на упругом основании с помощью тригонометрических рядов. Проведение исследования коэффициентов ряда Фурье.

    статья, добавлен 25.11.2016

  • Краткое описание антагонистической игры. Теория и методы принятия решений. Концепция расчета по методу анализа иерархий. Особенность обработки матриц парных сравнений. Решение задачи линейного программирования. Учение сложности и преобразование Фурье.

    методичка, добавлен 21.04.2016

  • Исследование сходимости ряда членов бесконечной геометрической прогрессии. Гармонический ряд, доказательство расходимости. Теоремы о непрерывности суммы, почленном интегрировании и дифференцировании функциональных рядов. Криволинейный интеграл 1-го рода.

    лекция, добавлен 19.01.2014

  • Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.

    лекция, добавлен 18.10.2013

  • Произвольный электростатический или магнитный скалярный потенциал как функция пространственных координат. Уравнение Лапласа. Цилиндрическая система координат в виде ряда Фурье. Метод разделения переменных для определения распределений потенциалов.

    реферат, добавлен 12.02.2013

  • Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.

    контрольная работа, добавлен 17.06.2014

  • Определенные и неопределенные интегралы функций и их свойства. Метод непосредственного интегрирования. Интегрирование элементарных и рациональных дробей, биноминальных дифференциалов. Универсальная тригонометрическая подстановка. Теорема Ньютона-Лейбница.

    курс лекций, добавлен 05.03.2016

  • Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.

    курс лекций, добавлен 10.06.2015

  • Описание метода векторного преобразования Фурье с разрывными коэффициентами. Подробная иллюстрация на примере динамической задачи теории упругости, техники применения указанного метода к решению задач математической физики в случае неоднородных сред.

    статья, добавлен 31.05.2013

  • Особенность обобщения теоремы о вложении Харди-Литтлвуда для некоторых классов функций, интегрируемых с весом на отрезке. Применение для внутреннего интеграла неравенства Гельдера. Введение средних непрерывных из-за непрерывности интегрирования Лебега.

    статья, добавлен 30.10.2016

  • Простейшие свойства модулей непрерывности высших порядков. Обобщение теоремы Джексона, неравенства С.Н. Бернштейна, обратных теорем теории приближения. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную непрерывную функцию.

    дипломная работа, добавлен 26.02.2020

  • Метод помехоустойчивого кодирования данных алгебраическими сверточными кодами в частотной области с применением быстрого преобразования Фурье Гуда-Томаса в конечных полях. Метод частотного кодирования сверточных кодов. Оценка вычислительной сложности.

    статья, добавлен 14.07.2016

  • Понятие числовых рядов и их свойства. Ряды с неотрицательными членами. Признаки Даламбера и Коши. Знакопеременные ряды. Свойства абсолютно сходящихся рядов. Функциональные последовательности, их графики. Функциональные и степенные ряды, их сходимость.

    лекция, добавлен 10.12.2011

  • Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.

    лекция, добавлен 17.01.2014

  • Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.

    курс лекций, добавлен 07.03.2015

  • Понятие первообразной от функции. Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Задачи о нахождении площади плоской фигуры. Несобственный интеграл.

    лекция, добавлен 12.04.2012

  • Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.

    практическая работа, добавлен 07.09.2016

  • Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.

    контрольная работа, добавлен 30.10.2010

  • Свойства непрерывных функций на языке приращений. Классификация точек разрыва. Экономический смысл непрерывности. Геометрический смысл теорем Вейерштрасса, Коши, Вейерштрасса. Применение в математике метода половинного деления. Вычисление корня уравнения.

    реферат, добавлен 19.12.2014

  • Теоретический обзор числовых рядов: их определение и сходимость. Основные свойства числовых рядов: признаки сходимости и расходимости. Характеристика знакочередующихся и знакопеременных рядов. Признак сходимости Лейбница. Ряды с положительными членами.

    методичка, добавлен 02.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.