Некоторые функции высшей математики
Определение бэта–функций интегралом Эйлера первого рода. Гамма-функции, определяемые интегралом Эйлера второго рода как удобное средство для вычисления некоторых интегралов. Производная гамма функции и вывод формулы Стирлинга, вычисление интегралов.
Подобные документы
Объём цилиндрического тела. Примеры вычисления двойных интегралов. Приложения двойных интегралов к задачам механики. Вычисление площадей и объёмов с помощью двойных интегралов. Вычисление площадей поверхностей с помощью двойного интегрирования.
реферат, добавлен 12.03.2010Построение графиков функции спроса и предложения, вычисление производных и приближенного значения числа через дифференциал функции. Определение экстремума, выгнутостей и вогнутостей функции. Вычисление интегралов и неоднородных линейных уравнений.
контрольная работа, добавлен 16.04.2010Информационный осмотр методов решения кратных интегралов. Понятие о кубатурных формулах. Метод ячеек и последовательное интегрирование. Метод Симпсона для кратных интегралов, его реализация. Программа вычисления интегралов с помощью кубатурной формулы.
курсовая работа, добавлен 23.04.2011Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.
дипломная работа, добавлен 29.10.2010Понятия поверхностных интегралов первого и второго рода, связь между ними, их геометрический и физический смысл, основные свойства и приложения. Задачи, связанные с функциями, определенными на поверхностях, вычисление массы материальной поверхности.
лекция, добавлен 29.09.2014Связь между поверхностными интегралами первого и второго рода, свойства поверхностного интеграла второго рода и формулы Остроградского-Гаусса и Стокса. Поток векторного поля. Физическое приложение поверхностного интеграла как потока векторного поля.
контрольная работа, добавлен 23.04.2011Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.
курсовая работа, добавлен 27.11.2018Общие методы вывода квадратурных формул. Процесс вычисления определенного интеграла. Рассмотрения метода интегрирования Гаусса с плавающими узлами. Математические квадратуры в специальных случаях. Вычисление несобственных интегралов второго рода.
учебное пособие, добавлен 13.09.2015Скалярное поле, производная по направлению, градиент функции. Оператор Гамильтона. Свойства векторного поля. Комплексные числа, формулы Эйлера. Производные и интеграл от функции комплексного переменного. Ряды Тейлора и Лорана. Вычеты и их использование.
учебное пособие, добавлен 24.06.2014Дифференцируемые функции своих аргументов. Вычисление производной сложной функции. Свойство инвариантности формы первого дифференциала. Теорема производной обратной функции, ее геометрический смысл. Производная степенно показательной функции, ее алгоритм.
лекция, добавлен 26.01.2014Порядок определения производной сложной функции. Сущность и процесс расчета инвариантности формы первого дифференциала. Характеристика производной обратной функции. Особенности логарифмической производной, алгоритм вычисления. Дифференцирование функции.
лекция, добавлен 29.09.2013Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.
учебное пособие, добавлен 19.12.2013- 38. Формула Грина
Сущность формулы Грина как установления связи между криволинейным интегралом по координатам, вычисленным по замкнутому контуру и двойным интегралом по области. Характеристика условий независимости криволинейного интеграла от пути интегрирования.
лекция, добавлен 17.01.2014 Методы исследования предела и производной функции, построения графиков. Вычисление неопределенных интегралов, методы интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных. Решение дифференциальных уравнений.
контрольная работа, добавлен 30.03.2015Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.
контрольная работа, добавлен 26.05.2014Решение неопределенных интегралов, проверка дифференцированием. Полный дифференциал функции. Исследование функции на экстремум. Частное решение интегрирования дифференциального уравнения с разделяющимися переменными. Исследование сходимости рядов.
контрольная работа, добавлен 16.11.2014Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.
презентация, добавлен 18.09.2013Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016Изучение видов определенного и несобственного интегралов, анализ их актуальности использования в математике. Выведение формулы Валлиса, ее применение для интеграла Эйлера-Пуассона. Способ получения формулы Тейлора с остаточным членом в интегральной форме.
курсовая работа, добавлен 21.01.2010Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.
контрольная работа, добавлен 18.03.2012- 46. Математика
Определение производных первого порядка. Порядок решения системы уравнений методом Крамера. Построение графика функции, используя исследования функции y = x3–2,5x2–2x+1,5. Поиск неопределенных интегралов. Определение координат векторов АВ, ВС, СА.
контрольная работа, добавлен 23.04.2013 Численные методы и их использование для вычисления кратных интегралов. Метод ячеек как один из простейших способов вычисления интеграла. Оценка погрешности метода ячеек. Текст и блок-схема программы. Выполнение программы в математическом пакете.
контрольная работа, добавлен 30.10.2010История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.
курсовая работа, добавлен 29.08.2010Вычисление предела функции. Составление уравнения касательных, перпендикулярных прямой, проходящей через заданные точки, к графику функции. Нахождение неопределенного и определенного интегралов. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 21.09.2013Характеристика применения дифференциального исчисления в экономике при помощи понятия эластичности. Определение понятия эластичности функции и его свойства. Свойства однородных функций. Использование формулы Эйлера в прикладных экономических расчетах.
курсовая работа, добавлен 17.03.2014