Некоторые функции высшей математики

Определение бэта–функций интегралом Эйлера первого рода. Гамма-функции, определяемые интегралом Эйлера второго рода как удобное средство для вычисления некоторых интегралов. Производная гамма функции и вывод формулы Стирлинга, вычисление интегралов.

Подобные документы

  • Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.

    контрольная работа, добавлен 21.10.2010

  • Анализ теоретических основ об интеграле от разрывных функций. Изучение признаков сходимости несобственных интегралов. Метод Л.В. Канторовича выделения особенностей. Изучение особенностей решения интегралов от разрывных функций методом Л.В. Канторовича.

    курсовая работа, добавлен 28.04.2019

  • Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.

    задача, добавлен 09.06.2014

  • Выявление статистической значимости и обоснованности; гипотезы и их проверка. Ошибки первого и второго рода в математической статистике. Вероятности ошибок (уровень значимости и мощность), их использование в области компьютеров и программного обеспечения.

    реферат, добавлен 30.12.2021

  • Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.09.2017

  • Особенность концепций численного интегрирования. Главная характеристика методов левых, правых и средних прямоугольников. Основной анализ оценки абсолютной погрешности. Примеры применения способов при приближенном вычислении определенных интегралов.

    контрольная работа, добавлен 17.01.2015

  • Понятие производной, её геометрический смысл. Правила дифференцирования, производная сложной функции. Дифференциал функции, логарифмическое дифференцирование, правило Лопиталя. Производные высших порядков и их применение для исследования свойств функций.

    методичка, добавлен 27.09.2012

  • Особенности вычисления двойного интеграла в прямоугольных декартовых координатах. Границы изменения переменной интеграции при постоянном значении второго аргумента. Правила определения тройного интеграла посредством ряда однократных интегрирований.

    лекция, добавлен 13.12.2015

  • Проведение исследования многомерных сингулярных интегральных уравнений. Особенность разработки основных приближенных методов для вычисления многомерных интегралов. Характеристика главной связи между разными формами средств представления функций.

    статья, добавлен 06.06.2018

  • Понятие о кубатурных формулах. Метод ячеек для вычисления кратных интегралов. Последовательное интегрирование, кубатурная формула типа Симпсона. Принципы построения программ с автоматическим выбором шага. Блок-схема и листинг программы, результаты.

    курсовая работа, добавлен 30.10.2010

  • Дифференцируемая и монотонная функция на промежутке Х. Дифференцирование функции с производной, не равной нулю, при условии что производная обратной функции равна обратной величине производной исходной функции. Приращение независимой переменной y.

    презентация, добавлен 21.09.2013

  • Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.

    презентация, добавлен 29.09.2017

  • Рассмотрение Теоремы Фейербаха и теоремы Эйлера об окружности девяти точек. Ознакомление с историей ее доказательства и названия. Построение прямой Эйлера и описанной окружности. Изучение свойств окружности Эйлера, нахождение ее центра и радиуса.

    презентация, добавлен 08.09.2014

  • Операция отыскания производной - дифференцирование функции. Механический и геометрический смысл производной. Пример нахождения производной функции, исходя из ее определения. Определение логарифма, ввод новой переменной, дифференциация частей уравнения.

    лекция, добавлен 17.05.2021

  • Локальный экстремум функции. Отыскание наибольшего и наименьшего значения непрерывной функции на отрезке. Расчет интервалов выпуклости графика кривой и точек перегиба функции. Определение интервалов возрастания и убывания функций с помощью производных.

    лекция, добавлен 07.07.2015

  • Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.

    курсовая работа, добавлен 10.06.2021

  • Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.

    курсовая работа, добавлен 09.03.2012

  • Геометрический и физический смысл производной. Правила дифференцирования, производные высших порядков. Изучение функции с помощью производной. Возрастание и убывание функции, экстремум функции. Общая схема исследования функции и построение ее графика.

    реферат, добавлен 10.04.2010

  • Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.

    лекция, добавлен 18.10.2013

  • Понятие первообразной от функции. Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Задачи о нахождении площади плоской фигуры. Несобственный интеграл.

    лекция, добавлен 12.04.2012

  • Определение функции и графика функции. Область определения и область значений функции, ее нули и экстремумы. Общая схема исследования функций: признаки возрастания и убывания, критические точки. Место и роль математики в менеджменте и экономике.

    реферат, добавлен 23.04.2011

  • Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.

    контрольная работа, добавлен 29.04.2019

  • Знакомство с особенностями вычисления значения функции в заданной точке с помощью разложения в ряд Тейлора, анализ проблем. Общая характеристика гиперболических функций, способы определения. Рассмотрение вопросов о разложимости функции в ряд Тейлора.

    контрольная работа, добавлен 18.09.2013

  • Полное приращение функции. Полный дифференциал функции. Касательная плоскость и нормальный вектор. Точки экстремума функции. Частные производные первого и второго порядка от функции. Направляющие косинусы вектора. Тангенс угла наклона касательной.

    контрольная работа, добавлен 06.06.2012

  • Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.

    контрольная работа, добавлен 23.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.