Регрессия МНК с одной объясняющей переменной

Суть метода наименьших квадратов, его применение для оценки эконометрических уравнений. Вычисление вторых производных и проверка определенности матрицы Гессе. Построение доверительных интервалов в модели однофакторной регрессии с нормальными ошибками.

Подобные документы

  • Статистические и математические функции Excel: модели линейной регрессии с двумя коэффициентами, полиномиальная регрессия. Построение экспоненциальной линии тренда путем расчета точек методом наименьших квадратов. Дисконтированный период окупаемости.

    контрольная работа, добавлен 10.11.2012

  • Сущность, виды и причины безработицы в России. Построение модели парной регрессии. Определение показателя эластичности. Вычисления критерия Дарбина-Уотсона и индекса Ласпейреса. Исследование остатков с применением предпосылок метода наименьших квадратов.

    дипломная работа, добавлен 18.06.2014

  • Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.

    задача, добавлен 20.06.2016

  • Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

    лабораторная работа, добавлен 05.09.2013

  • Вычисление параметров уравнения линейной регрессии; экономическая интерпретация коэффициента регрессии. Проверка значимости параметров регрессии с помощью t-критерия Стьюдента. Запись системы одновременных уравнений и проверка их на идентифицируемость.

    контрольная работа, добавлен 29.10.2012

  • Вычисление параметров уравнений линейной регрессии. Главная особенность интерпретации рассчитанных характеристик. Основной анализ регулярной модели зависимости выручки предприятия от капиталовложений. Построение матрицы коэффициентов парной корреляции.

    контрольная работа, добавлен 20.02.2015

  • Построение уравнения линейной и квадратичной регрессии с помощью метода наименьших квадратов. Анализ тесноты связи с помощью показателей корреляции и детерминации. Расчет общего и частного F-критерия Фишера. Сущность информативных лаговых переменных.

    контрольная работа, добавлен 07.10.2015

  • Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Расчет остаточной суммы квадратов. Оценка дисперсии остатков. Вычисление коэффициента детерминации, проверка значимости уравнения регрессии.

    задача, добавлен 11.06.2013

  • Системы эконометрических уравнений. Суть идентификации - единственности соответствия между приведенной и структурной формой модели. Оценка параметров структурной модели. Косвенный и двухшаговый метод наименьших квадратов. Модель протекционизма Сальвадора.

    курсовая работа, добавлен 25.09.2011

  • Расчет линейного коэффициента парной корреляции, средней ошибки аппроксимации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации с помощью критерия Фишера. Построение систем эконометрических уравнений, их приведенная форма.

    контрольная работа, добавлен 21.03.2013

  • Построение диаграммы рассеяния и описание взаимосвязи переменных. Построение уравнения множественной регрессии в линейной форме с выбранными факторами. Расчет параметров линейной парной регрессии. Составление уравнений и графиков нелинейной регрессии.

    контрольная работа, добавлен 28.04.2016

  • Построение математической модели системы на основе экспериментально полученных в процессе её функционирования входных и выходных сигналов. Оценки по критериям наименьших квадратов, наименьших взвешенных квадратов, максимального правдоподобия и риска.

    лабораторная работа, добавлен 16.12.2013

  • Методы отбора экзогенных переменных и оценки качества полученного уравнения. Использование надстройки "Анализ данных" пакета MS Excel при построении моделей множественной регрессии. Предпосылки метода наименьших квадратов (условия Гаусса-Маркова).

    лабораторная работа, добавлен 19.02.2016

  • Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.

    лабораторная работа, добавлен 06.02.2015

  • Определение динамики стоимости недвижимости при помощи корреляционно-регрессионного анализа. Ввод исходных данных и построение корреляционной матрицы. Поиск доверительных интервалов для коэффициентов уравнения регрессии. Расчёт коэффициента эластичности.

    контрольная работа, добавлен 26.03.2014

  • Сущность метода наименьших квадратов (МНК). Функциональная, стохастическая и корреляционная связи. Инструментарий МНК: процедуры проверки гипотезы о существовании связи, подбора лучшей функциональной модели, определения параметров уравнения регрессии.

    лекция, добавлен 29.09.2013

  • Основные направления эконометрической деятельности. Этапы эконометрического исследования: постановка проблемы, спецификация моделей, оценка параметров модели. Сущность построения модели множественной регрессии. Анализ оценок метода наименьших квадратов.

    контрольная работа, добавлен 03.01.2012

  • Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.

    курс лекций, добавлен 10.02.2014

  • Изучение параметров уравнения линейной регрессии. Расчет остаточной суммы квадратов. Проверка выполнения предпосылок МНК. Вычисление дисперсий случайных величин. Свойства коэффициентов регрессии. Критерий поворотных точек. Парный коэффициент корреляции.

    контрольная работа, добавлен 04.02.2014

  • Базовый метод регрессионного анализа для оценки неизвестных параметров моделей по выборочным данным: история, свойства оценок. Парная линейная регрессия; взвешенный метод наименьших квадратов; авторегрессионное преобразование. Применение МНК в экономике.

    реферат, добавлен 10.10.2012

  • Построение однофакторной и двухфакторной моделей регрессии. Анализ влияния фактора на зависимую переменную по моделям с помощью коэффициентов детерминации, множественной корреляции, эластичности и установление степени линейной связи между переменными.

    практическая работа, добавлен 16.05.2013

  • Порядок вычисления параметров и построения поля корреляции и эмпирической линии регрессии. Расчет значимости коэффициентов регрессии с помощью t-статистики Стьюдента, определение доверительных интервалов, коэффициентов детерминации и корреляции.

    контрольная работа, добавлен 27.09.2011

  • Линейное уравнение множественной регрессии. Расчет частных коэффициентов эластичности. Определение парных и частных коэффициентов корреляции. Особенности системы эконометрических уравнений. Расчет параметров линейного, степенного, параболического трендов.

    контрольная работа, добавлен 11.11.2015

  • Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.

    контрольная работа, добавлен 04.05.2011

  • Определение средней выручки продавцов. Расчет коэффициента корреляции. Построение графиков корреляционных зависимостей. Оценка адекватности регрессионных моделей. Расчет системы уравнений для теоретической линии регрессии методом наименьших квадратов.

    контрольная работа, добавлен 16.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.