Регрессия МНК с одной объясняющей переменной

Суть метода наименьших квадратов, его применение для оценки эконометрических уравнений. Вычисление вторых производных и проверка определенности матрицы Гессе. Построение доверительных интервалов в модели однофакторной регрессии с нормальными ошибками.

Подобные документы

  • Предмет и задачи эконометрического моделирования. Построение парных и множественных регрессионных моделей экономических процессов. Анализ модели множественной линейной регрессии. Характеристика особенностей эконометрических моделей интегрированного типа.

    методичка, добавлен 14.05.2017

  • Исследование взаимосвязи энерговооруженности и выпуска готовой продукции. Построение графиков практической и теоретической линии регрессии. Измерение тесноты связи. Проверка информации на нормальность распределения. Определение коэффициента корреляции.

    контрольная работа, добавлен 30.06.2014

  • Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.

    контрольная работа, добавлен 05.02.2016

  • Линейная модель парной регрессии и корреляции. Проверка существенности факторов и показатели качества регрессии. Методы оценки структурной формы модели. Автокорреляция уровней временного ряда. Моделирование сезонных колебаний, критерий Дарбина-Уотсона.

    курс лекций, добавлен 27.11.2013

  • Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.

    курсовая работа, добавлен 23.11.2013

  • Характеристика основных показателей качества параметров регрессии. Порядок работы при проверке значимости коэффициента. Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Аспекты предсказания среднего значения зависимой переменной.

    курс лекций, добавлен 11.06.2014

  • Расчет матрицы парных коэффициентов корреляции, параметров линейной парной регрессии и их статистическая значимость. Определение фактических и модельных значений, точек прогноза. Построение модели формирования цены квартиры за счёт значимых факторов.

    контрольная работа, добавлен 10.06.2015

  • Прогнозирование стоимости нефти как важная задача для проведения государственной политики. Использование нелинейного метода наименьших квадратов для оценки параметров модели. Применение накопившейся статистической информации для уточнения прогноза.

    статья, добавлен 13.09.2018

  • Построение точечной диаграммы рассеяния. Анализ системы линейных уравнений. Вычисление средней ошибки аппроксимации. Оценка гипотезы о линейной корреляции. Составление квадратической, гиперболической, экспоненциальной моделей, связей между признаками.

    лабораторная работа, добавлен 05.05.2016

  • Построение крупных эконометрических систем моделей, описывающих экономику той или иной страны и включающих в качестве составных элементов производственную и инвестиционную функцию. Понятие эконометрических моделей и уравнений и проблемы идентификации.

    контрольная работа, добавлен 24.09.2014

  • Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.

    курсовая работа, добавлен 29.04.2014

  • Построение статистической модели зависимости стоимости квартиры от размера ее площади. Расчет параметров линейного уравнения множественной регрессии. Сравнительная оценка влияния факторов на результативный показатель с помощью коэффициентов эластичности.

    контрольная работа, добавлен 06.04.2015

  • Определение корреляционной зависимости между величинами. Характеристика значимости нелинейной корреляции для множественного уравнения парной регрессии. Оценка качества модели функции регрессии и её параметров. Изучение методов наименьших квадратов.

    курсовая работа, добавлен 26.04.2013

  • Построение ковариационной и корреляционной матрицы (количество строк и столбцов равно числу переменных). Статистический анализ построенной регрессии, определение значимости модели и ее параметров, анализ адекватности модели на основе критерия Фишера.

    контрольная работа, добавлен 03.11.2018

  • Расчет коэффициента корреляция между экономическими показателями. Построение линейной и нелинейной регрессии. Проверка модели на отсутствие автокорреляции и на гетероскедастичность моделей. Сравнение моделей между собой и выбор наилучшей из них.

    контрольная работа, добавлен 04.03.2015

  • Матричная запись множественной линейной модели регрессионного анализа. Решение задач регрессивного анализа. Пример решения нахождения модели множественной регрессии. Проверка статистической значимости коэффициентов уравнения множественной регрессии.

    контрольная работа, добавлен 29.01.2012

  • Уровень жизни населения - главный индикатор развития экономики. Исследование отношения уровня валового внутреннего продукта к количеству эмигрантов в Республике Узбекистан. Методика определения доверительных интервалов для коэффициентов регрессии.

    курсовая работа, добавлен 15.01.2016

  • Уравнения линейной, гиперболической, степенной и показательной парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка значимости коэффициентов регрессий с помощью критерия Стьюдента и доверительных интервалов.

    контрольная работа, добавлен 24.12.2010

  • Разработка оптимального плана производства, дающего наибольшую прибыль. Построение графика временного ряда; построение линейной модели и оценка ее параметров с помощью метода наименьших квадратов. Оценка адекватности и точности построенной модели.

    контрольная работа, добавлен 09.06.2014

  • Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.

    контрольная работа, добавлен 08.03.2015

  • Расчет матрицы парных коэффициентов корреляции. Оценка параметров линейной и парной модели с полным перечнем факторов, влияние факторных переменных на Y по коэффициентам регрессии. Тестирование предпосылок теоремы Гаусса-Маркова для двух моделей.

    контрольная работа, добавлен 18.04.2018

  • Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.

    презентация, добавлен 18.01.2015

  • Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.

    презентация, добавлен 26.12.2014

  • Зависимость индекса человеческого развития от валового накопления и суточной калорийности питания населения. Расчет парных коэффициентов корреляции с помощью средних квадратических отклонений и показателей. Построение однофакторных уравнений регрессии.

    контрольная работа, добавлен 13.01.2018

  • Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.

    контрольная работа, добавлен 01.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.