Регрессия МНК с одной объясняющей переменной
Суть метода наименьших квадратов, его применение для оценки эконометрических уравнений. Вычисление вторых производных и проверка определенности матрицы Гессе. Построение доверительных интервалов в модели однофакторной регрессии с нормальными ошибками.
Подобные документы
Предмет и задачи эконометрического моделирования. Построение парных и множественных регрессионных моделей экономических процессов. Анализ модели множественной линейной регрессии. Характеристика особенностей эконометрических моделей интегрированного типа.
методичка, добавлен 14.05.2017Исследование взаимосвязи энерговооруженности и выпуска готовой продукции. Построение графиков практической и теоретической линии регрессии. Измерение тесноты связи. Проверка информации на нормальность распределения. Определение коэффициента корреляции.
контрольная работа, добавлен 30.06.2014- 103. Основы эконометрики
Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.
контрольная работа, добавлен 05.02.2016 - 104. Эконометрика
Линейная модель парной регрессии и корреляции. Проверка существенности факторов и показатели качества регрессии. Методы оценки структурной формы модели. Автокорреляция уровней временного ряда. Моделирование сезонных колебаний, критерий Дарбина-Уотсона.
курс лекций, добавлен 27.11.2013 Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013Характеристика основных показателей качества параметров регрессии. Порядок работы при проверке значимости коэффициента. Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Аспекты предсказания среднего значения зависимой переменной.
курс лекций, добавлен 11.06.2014Расчет матрицы парных коэффициентов корреляции, параметров линейной парной регрессии и их статистическая значимость. Определение фактических и модельных значений, точек прогноза. Построение модели формирования цены квартиры за счёт значимых факторов.
контрольная работа, добавлен 10.06.2015Прогнозирование стоимости нефти как важная задача для проведения государственной политики. Использование нелинейного метода наименьших квадратов для оценки параметров модели. Применение накопившейся статистической информации для уточнения прогноза.
статья, добавлен 13.09.2018Построение точечной диаграммы рассеяния. Анализ системы линейных уравнений. Вычисление средней ошибки аппроксимации. Оценка гипотезы о линейной корреляции. Составление квадратической, гиперболической, экспоненциальной моделей, связей между признаками.
лабораторная работа, добавлен 05.05.2016Построение крупных эконометрических систем моделей, описывающих экономику той или иной страны и включающих в качестве составных элементов производственную и инвестиционную функцию. Понятие эконометрических моделей и уравнений и проблемы идентификации.
контрольная работа, добавлен 24.09.2014Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Построение статистической модели зависимости стоимости квартиры от размера ее площади. Расчет параметров линейного уравнения множественной регрессии. Сравнительная оценка влияния факторов на результативный показатель с помощью коэффициентов эластичности.
контрольная работа, добавлен 06.04.2015Определение корреляционной зависимости между величинами. Характеристика значимости нелинейной корреляции для множественного уравнения парной регрессии. Оценка качества модели функции регрессии и её параметров. Изучение методов наименьших квадратов.
курсовая работа, добавлен 26.04.2013- 114. Регрессионный анализ
Построение ковариационной и корреляционной матрицы (количество строк и столбцов равно числу переменных). Статистический анализ построенной регрессии, определение значимости модели и ее параметров, анализ адекватности модели на основе критерия Фишера.
контрольная работа, добавлен 03.11.2018 Расчет коэффициента корреляция между экономическими показателями. Построение линейной и нелинейной регрессии. Проверка модели на отсутствие автокорреляции и на гетероскедастичность моделей. Сравнение моделей между собой и выбор наилучшей из них.
контрольная работа, добавлен 04.03.2015Матричная запись множественной линейной модели регрессионного анализа. Решение задач регрессивного анализа. Пример решения нахождения модели множественной регрессии. Проверка статистической значимости коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 29.01.2012Уровень жизни населения - главный индикатор развития экономики. Исследование отношения уровня валового внутреннего продукта к количеству эмигрантов в Республике Узбекистан. Методика определения доверительных интервалов для коэффициентов регрессии.
курсовая работа, добавлен 15.01.2016Уравнения линейной, гиперболической, степенной и показательной парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка значимости коэффициентов регрессий с помощью критерия Стьюдента и доверительных интервалов.
контрольная работа, добавлен 24.12.2010Разработка оптимального плана производства, дающего наибольшую прибыль. Построение графика временного ряда; построение линейной модели и оценка ее параметров с помощью метода наименьших квадратов. Оценка адекватности и точности построенной модели.
контрольная работа, добавлен 09.06.2014Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.
контрольная работа, добавлен 08.03.2015Расчет матрицы парных коэффициентов корреляции. Оценка параметров линейной и парной модели с полным перечнем факторов, влияние факторных переменных на Y по коэффициентам регрессии. Тестирование предпосылок теоремы Гаусса-Маркова для двух моделей.
контрольная работа, добавлен 18.04.2018Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.
презентация, добавлен 18.01.2015Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.
презентация, добавлен 26.12.2014Зависимость индекса человеческого развития от валового накопления и суточной калорийности питания населения. Расчет парных коэффициентов корреляции с помощью средних квадратических отклонений и показателей. Построение однофакторных уравнений регрессии.
контрольная работа, добавлен 13.01.2018Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.
контрольная работа, добавлен 01.03.2017