Векторы. Линейные операции. Базис
Характеристика векторных величин. Понятие единичного вектора. Линейные операции с векторами и действия над векторами в координатной форме. Деление отрезка в заданном отношении. Координаты вектора в прямоугольной системе. Условие коллинеарности векторов.
Подобные документы
Параллельность прямых, прямой и плоскости, взаимное расположение прямых в пространстве. Перпендикулярность прямой и плоскости. Понятие вектора в пространстве, сложение и вычитание векторов. Координаты точки и координаты вектора. Определение объема тел.
учебное пособие, добавлен 24.02.2014Линейные уравнения и неравенства с двумя неизвестными. Определители произвольного порядка. Системы линейных алгебраических уравнений. Векторы и линейные операции над ними. Аналитическая геометрия на плоскости. Преобразование декартовых координат.
методичка, добавлен 24.03.2015Деление отрезка прямой в заданном отношении по средствам построения. Геометрическое определение "золотого сечения". Вывод формул для нахождения координат точки, делящей отрезок в данном отношении. Применение теорем Менелая и Чевы для решения задач.
курсовая работа, добавлен 18.05.2016Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.
контрольная работа, добавлен 29.02.2020Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.
лекция, добавлен 29.09.2013Рассмотрение содержания арифметической теории квадратичных форм. Изучение основ теории билинейных и квадратичных форм. Линейные операции над векторами евклидова пространства. Неравенство Коши-Буняковского. Основные свойства квадратической формы.
реферат, добавлен 31.12.2020- 32. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.
контрольная работа, добавлен 22.08.2014Признак коллинеарности векторов, их абсолютная длинна и скалярное произведение. Сумма векторов, правило треугольника, параллелограмма, многоугольника, параллелепипеда Смешанные произведения в координатах. Проекции вектора на ось. Координатные формулы.
реферат, добавлен 28.02.2011- 35. Теория вектора
Характеристика вектора, как семейства параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков. Сложение и равенство векторов, свойства операций над ними, скалярное произведение двух векторов. Доказательства и решения задач.
контрольная работа, добавлен 26.10.2009 Понятие и равенство векторов. Законы сложения векторов. Произведение вектора на число. Применение векторов к решению задач. Средняя линия трапеции. Уравнение линии на плоскости. Теорема о площади треугольника. Вычисление площади многоугольника.
курс лекций, добавлен 08.10.2017Основные различия между прямоугольной системой координат и ортонормированным базисом. Способы определения коллинеарности векторов плоскости. Характеристика пространственного базиса и аффинной системы координат. Примеры задач по геометрии, их решение.
контрольная работа, добавлен 04.11.2012Понятие и основные свойства векторов как направленных отрезков, их типы и параметры, принципы измерения. Содержание и подходы к проведению линейных операций над векторами, используемые при этом правила. Проектирование на ось и составляющие процесса.
презентация, добавлен 23.08.2016Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.
лекция, добавлен 09.07.2015Нахождение длинны стороны, внутреннего угла, точки пересечения высот. Уравнение медианы, проведенной через вершину. Система линейных неравенств. Понятие функции и её график. Координаты вектора в базисе. Производная функции и неопределённый интеграл.
контрольная работа, добавлен 16.12.2012Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.
презентация, добавлен 21.09.2013Развертка поверхности методом триангуляции. Определение натуральных величин треугольников. Обозначение направляющего единичного вектора следа и его координаты. Расчет угла, который составляет вектор нормали плоскости, совмещение плоскости треугольника.
статья, добавлен 30.05.2017Метод координат в пространстве. Решение задачи на многогранник, цилиндр, конус. Определение координат вектора разности. Условие компланарности. Введение прямоугольной системы координат. Расчет длинны, используя формулу скалярного произведения векторов.
контрольная работа, добавлен 26.02.2011Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.
лекция, добавлен 26.01.2014Суть ортонормированной (декартовой) системой координат, в которой единицы измерения по всем осям равны друг другу. Действия над векторами в координатной форме, вычисление направляющих косинусов. Уравнение окружности, общее преобразование систем координат.
контрольная работа, добавлен 15.05.2011Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.
презентация, добавлен 11.12.2013Понятие, основные виды (скалярная, единичная, нулевая, транспонированная) и равенство матриц как множества чисел, образующих прямоугольную таблицу, определение вектора. Характеристика операций над матрицами в линейной алгебре. Свойства умножения матриц.
лекция, добавлен 18.03.2016Анализ свойств операции в конечномерном векторном пространстве, определяющейся как скаляр произведений перемножаемых векторов, не зависящих от системы координат. Ознакомление с метрическими формулами проекций векторов на оси. Декартовые координаты.
лекция, добавлен 29.09.2013Координаты вектора в прямоугольном трехмерном пространстве. Представление заданного вектора в сферических координатах. Сопутствующий параллелепипед и его три диагонали. Формы преобразования прямоугольных координат в различные сферические координаты.
практическая работа, добавлен 19.01.2011Линейные ограниченные операторы в банаховых пространствах. Векторные пространства над полем. Изоморфизмом векторных пространств и оператор умножения на функцию. Основные свойства линейности интеграла. Решение сопряженного однородного уравнения.
реферат, добавлен 20.02.2018