Векторы. Линейные операции. Базис

Характеристика векторных величин. Понятие единичного вектора. Линейные операции с векторами и действия над векторами в координатной форме. Деление отрезка в заданном отношении. Координаты вектора в прямоугольной системе. Условие коллинеарности векторов.

Подобные документы

  • Примеры различных операций и вычислений с векторами и матрицами в линейной алгебре. Теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования. Алгоритм оценки величины и нахождения собственных значений. Отношение Рэлея.

    реферат, добавлен 26.01.2012

  • Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.

    контрольная работа, добавлен 03.02.2017

  • Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.

    учебное пособие, добавлен 06.02.2011

  • Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.

    шпаргалка, добавлен 23.01.2011

  • Порядок определения центра рассеивания случайного вектора и вычисление условного математического ожидания. Построение ковариационной и корреляционной матрицы. Закон распределения случайных величин и вероятности экспоненциального закона распределения.

    контрольная работа, добавлен 19.03.2012

  • Шаги, совершаемые при сведении простого уравнения к эквивалентному, основанные на использовании четырех аксиом. Линейные однородные уравнения и их основные свойства, корни действительные и различные. Линейные уравнения высших порядков, их параметры.

    реферат, добавлен 21.08.2017

  • Основні поняття векторної алгебри, геометрична модель векторної величини. Лінійні операції з векторами, лінійна залежність та лінійна незалежність системи векторів. Визначення проекції вектора на ось. Прямокутна декартова система координат в просторі.

    лекция, добавлен 11.02.2011

  • Исследование достижений Рене Декарта - французского математика и философа. Определение и анализ сущности вектора – направленного отрезка прямой и геометрической абстракции векторной величины. Ознакомление с особенностями декартовой системы координат.

    презентация, добавлен 03.05.2016

  • Линейные (векторные) пространства. Пространства числовых последовательностей. Топологические векторные пространства, обладающие базисным свойством. Существование базиса в топологическом векторном пространстве. Единственность базиса, метод декомпозиции.

    курс лекций, добавлен 06.08.2015

  • Линейные операции с матрицами: сложение и умножение. Замена элементов матрицы на соответствующие алгебраические дополнения с последующим транспонированием. Разложение определителя по его столбцу. Элементы главной диагонали. Поэлементное сложение данных.

    лекция, добавлен 29.09.2013

  • Понятие евклидова пространства. Коллинеарные векторы. Размерность и базис векторного пространства. Операции над матрицами. Линейное преобразование переменных. Теорема о делении с остатком. Понятие квадратичной формы, исчисление ее канонического базиса.

    дипломная работа, добавлен 17.01.2011

  • Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.

    курсовая работа, добавлен 04.03.2020

  • Характеристика методики определения угла между двумя векторами с помощью их скалярного произведения. Определение уравнения плоскости основания пирамиды, угла между гранью, образованной векторами и плоскостью основания. Решение матричного уравнения.

    методичка, добавлен 14.12.2015

  • Определение координат вектора в заданном базисе. Разработка уравнения линии, каждая точка которой отстоит от заданной точки А вдвое дальше, чем от прямой. Доказательство совместимости функции, решение тремя способами, расчет базиса и размерности решений.

    контрольная работа, добавлен 12.05.2015

  • Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.

    учебное пособие, добавлен 13.01.2014

  • Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.

    курс лекций, добавлен 02.05.2014

  • Основные особенности алгоритмов выполнения линейных и нелинейных операций в системе обобщенных комплексных чисел. Изучение изоморфизма систем комплексных чисел и обобщенных комплексных чисел. Геометрическая интерпретация обобщенных комплексных чисел.

    статья, добавлен 29.01.2019

  • Совместность системы линейных уравнений методом Гаусса; средствами матричного исчисления. Решение векторных задач методом Крамера. Условие линейной независимости и координаты векторов в базисе. Решение задач с построением графика, пределы функции.

    контрольная работа, добавлен 11.03.2012

  • Исследование особенностей обозначения числовых матриц. Линейные операции над ними. Характеристика основ коммутативного закона умножения. Аспекты проверки свойства ассоциативности. Рассмотрение основных функций вырожденных и невырожденных матриц.

    реферат, добавлен 19.06.2015

  • Условия ортогональности линейного преобразования. Независимость ортонормированной системы векторов. Стандартное евклидово пространство и ортогональные матрицы. Геометрический смысл собственного преобразования А. Доказательства леммы. Индукция векторов.

    лекция, добавлен 30.04.2014

  • Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.

    курс лекций, добавлен 20.09.2011

  • Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.

    презентация, добавлен 18.12.2017

  • Определение понятия вектора как геометрического объекта, его графическое изображение и обозначение. Особенности нулевого вектора. Коллинеарные, сонаправленные и противоположно направленные вектора, их особенности и изображение на графических иллюстрациях.

    шпаргалка, добавлен 26.05.2017

  • Понятие линейной комбинации векторов. Выражение члена с номером через остальные слагаемые. Свойства линейнозависимой системы векторов. Геометрический смысл линейной зависимости, коллинеарности и компланарности. Выражение переменной через другие значения.

    презентация, добавлен 21.09.2013

  • Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.

    лекция, добавлен 26.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.