Понятие многочленов

Сущность многочленов: понятие, степень, равенство, операции, схема Горнера. Характеристика многочленов нулевой степени. Значение корней многочленов в алгебре. Особенности схемы Горнера, примеры симметричных многочленов и проверка корня на кратность.

Подобные документы

  • Понятие и особенности перестановок чисел. Определение и свойства определителя. Свойства минора и алгебраического дополнения. Теорема разложения определителя по строке или столбцу. Примеры вычисления и разложения по первой строке определителей матриц.

    лекция, добавлен 24.11.2015

  • Преобразование и объединение групп общих решений тригонометрических уравнений. Решение уравнений с применением формул тройного аргумента или понижения степени. Функциональные методы решения тригонометрических и комбинированных уравнений, отбор корней.

    реферат, добавлен 09.09.2016

  • Понятие допустимой (почти) пара-гиперкомплексной структуры. Субримановы многообразия контактного типа с распределением нулевой кривизны. Внутренняя линейная связность. Коэффициенты внутренней метрической связности. Нулевой тензор кривизны Схоутена.

    статья, добавлен 03.03.2018

  • Понятие симметрии и исследование примеров ее проявления в природе, классификация и типы: осевая, двусторонняя, центральная, относительно прямой и точки. Использование симметричных фигур в архитектуре, искусстве. Математическое значение данного явления.

    презентация, добавлен 26.01.2017

  • Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.

    презентация, добавлен 06.12.2011

  • Числовые равенства с взаимно простыми основаниями степеней и натуральным показателем степени n > 1. Условия верности таких числовых равенств. Расчет уравнений, при показателе степени равном количеству слагаемых равенств при помощи теоремы Ферма.

    научная работа, добавлен 10.02.2015

  • Теоретические аспекты понятия о комплексных числах, число действительных корней и основные правила их извлечения. Методы решения различных видов уравнений с несколькими переменными в радикалах и приближенное решение уравнений в элементарной алгебре.

    презентация, добавлен 11.03.2012

  • Операции над матрицами, их значение в прикладной математике. Понятие определителя матрицы. Вынесение общего множителя в строке за знак определителя. Вычисление алгебраического дополнения для каждого элемента. Математические модели объектов и процессов.

    контрольная работа, добавлен 23.04.2013

  • Нахождение двух наименьших положительных корней уравнения. Рассмотрение метода деления отрезка пополам. Описание программного алгоритма этого метода. Определение значения корней с необходимой точностью. Характеристика метода итераций, пример решения.

    лабораторная работа, добавлен 24.11.2014

  • Основные свойства машины Тьюринга, отличающие ее от исполнителя – человека. Понятие конфигураций машины Тьюринга. Основные свойства операции композиции. Примеры вычислимых функций по Тьюрингу. Операция ветвления и зацикливания, их ключевые особенности.

    презентация, добавлен 21.10.2019

  • Рассмотрение метода извлечения квадратного корня подробно, который описан древнегреческим ученым Героном Александрийским. Определение сущности иррациональных чисел. Ознакомление со свойствами квадратных корней. Анализ способов упрощения выражений.

    контрольная работа, добавлен 29.10.2017

  • Числовые равенства с целыми, положительными, взаимно простыми основаниями, натуральным показателем степени n>1. Условия их верности. Теорема, описывающая числовые равенства, которые существуют при показателе степени, равном количеству слагаемых равенства.

    статья, добавлен 18.04.2020

  • Знакомство с основными методами цепных дробей отделения вещественных корней, анализ особенностей. Отделение вещественных корней полиномиального уравнения как важный процесс нахождения вещественных непересекающихся интервалов, общая характеристика.

    контрольная работа, добавлен 13.05.2013

  • Основное понятие булевой алгебры, характеристика и предназначение логических операций. Сущность операции отрицания, особенности и применение конъюнкции. Описание логического следования и логического равенства. Равносильные формулы алгебры логики.

    презентация, добавлен 21.10.2018

  • Открытие логарифмов, первые логарифмические таблицы. Понятие о логарифмировании как действии, обратном возведению в степень. Практическое применение десятичных логарифмов. Вычисление логарифмов по основанию. Понятие десятичного и натурального логарифма.

    презентация, добавлен 22.12.2014

  • Понятие и история становления систем счисления как определенных способов представления чисел и соответствующих правил действия над ними. Их типы и отличительные особенности: позиционные и непозиционные. Основные примеры и значение каждой их систем.

    презентация, добавлен 25.10.2018

  • Понятие, сущность и характеристика математики и философии как науки. Влияние математики на философию, последствия их роль и описание. Соотношение математики и логики, а также полученные результаты. Понятие об иррациональном числе, особенности исчисления.

    реферат, добавлен 08.02.2009

  • Понятие производной, ее геометрический, физический смысл. Производные высших порядков, изучение функции с помощью производной. Достаточные условия экстремума функции: нахождение экстремума, точка перегиба графика функции. Применение производной в алгебре.

    реферат, добавлен 10.05.2009

  • Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.

    курсовая работа, добавлен 15.12.2010

  • Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.

    курсовая работа, добавлен 10.07.2012

  • Расчет предела функции и ее производной. Понятие дифференциала и неопределенного интеграла. Примеры решения типовых задач по теории вероятностей. Случайные величины и их нормальное распределение. Регрессионный анализ. Проверка статистических гипотез.

    методичка, добавлен 09.03.2015

  • Простейшие элементарные функции: постоянная, степенная, показательная, логарифмическая, тригонометрическая, обратная. Особенности операции извлечения из корня. Изучение функций, которые можно получить при помощи конечного числа арифметических операций.

    презентация, добавлен 21.09.2013

  • Теорема о существовании корня непрерывной функции. Методы отделения и уточнения корней: алгоритмы, скорость сходимости, условия применимости, их результаты. Геометрическая интерпретация методов Ньютона и хорд. Варианты выбора начального приближения.

    презентация, добавлен 30.10.2013

  • Основные правила и формулы решения нелинейных уравнений. Процесс отделения корней, характеристика основных проблем. Особенности применения графического и аналитического методов. Конечные методы уточнения корней нелинейного уравнения. Метод дихотомии.

    лекция, добавлен 29.10.2013

  • Функции комплексной переменной и их значение. Понятие аналитической функции, дифференцирование первого и других равенств. Анализ функции комплексного аргумента. Основные теоремы о пределе и непрерывности вещественных функций в комплексных случаях.

    реферат, добавлен 22.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.