Комбинаторика
Сущность и составные части комбинаторики как ключевой ветви математики. Теория конфигураций и перечисления. Правило суммы и произведения. Основные свойства сочетаний. Решение задачи с помощью треугольника Паскаля. Комбинаторные конфигурации и блок-схемы.
Подобные документы
Анализ правил дифференцирования. Производные основных элементарных функций. Правило Лопиталя и его применение к вычислению пределов. Суть свойств неопределенного интеграла. Способы непосредственного подсчета вероятности. Главные элементы комбинаторики.
шпаргалка, добавлен 07.11.2016Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Место задачи коммивояжера в теории комбинаторики с ее применением при разработке программного обеспечения. Постановка и математическая модель задачи коммивояжера. Особенности решения задачи коммивояжера методом ветвей и границ и венгерским методом.
курсовая работа, добавлен 23.04.2014Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.
учебное пособие, добавлен 11.10.2014Основные закономерности теории вероятностей. Элементы комбинаторики. Система случайных величин. Вероятностный смысл плотности распределения. Законы больших чисел. Линейная регрессия. Статистическая проверка гипотез. Понятие о множественной корреляции.
учебное пособие, добавлен 08.12.2013Основные понятия теории вероятности. Понятие события и его основные виды. Вероятность событий: классическое и статистическое. Элементы комбинаторики. Теорема сложения вероятностей. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли.
курсовая работа, добавлен 07.06.2014Изучение основных понятий комбинаторики и вероятности. Анализ истории комбинаторики, характеристика ее основных понятий и формул. Анализ сущности понятия вероятность. Характеристика особенностей применение формул комбинаторики к подсчету вероятности.
курсовая работа, добавлен 09.03.2020Понятие прямоугольного треугольника, его характеристика и отличительные свойства. Теорема о сумме острых углов прямоугольного треугольника. Закрепление знаний учащихся в ходе решения тригонометрических задач по определению длины катетов и гипотенузы.
презентация, добавлен 30.10.2014- 60. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010 Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.
учебное пособие, добавлен 25.12.2013Подсчет числа различных комбинаций как основная цель и задача комбинаторики. Классическая формула для нахождения вероятности. Перестановки элементов множества как упорядоченные элементы из всех элементов множества. Сочетание элементов вероятности.
презентация, добавлен 01.11.2013Доказывание тождеств в теории множеств. Рассмотрение основных положений комбинаторики. Определение Эйлеровой цепи в неориентированном графе. Решение задач по алгебре логики. Изучение возможностей решения системы уравнений с использованием метода Гаусса.
контрольная работа, добавлен 20.01.2022Классическая схема случаев - испытание, где число элементарных исходов конечно, и все они несовместны и равновозможны. Правила суммы, произведения. Характеристика схемы испытаний Бернулли, интегральной теоремы Муавра-Лапласа, схемы Пуассона, цепи Маркова.
реферат, добавлен 25.02.2011Формулы комбинаторики и вероятность. Классическое определение вероятности. Непрерывные и дискретные случайные величины. Закон распределения случайных дискретных величин, их числовые характеристики. Статистические методы обработки экспериментальных данных.
учебное пособие, добавлен 29.09.2017Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.
методичка, добавлен 07.10.2015- 68. Линейная алгебра
Расчет нахождения модуля вектора, скалярного произведения, векторного и смешанного произведения векторов. Нахождение заданных координат с помощью формулы расчета по методу Крамера. Вычисление вращающего момента силы, периметра и площади треугольника.
задача, добавлен 31.03.2014 Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.
учебное пособие, добавлен 24.11.2014Понятие и сущность текстовой задачи. Вспомогательные модели, используемые в начальном обучении математики. Решение системы уравнений алгебраическим способом. Использование методов текстовых арифметических задач на уроках математики в начальных классах.
методичка, добавлен 28.03.2017Греческая система счисления (аттическая): использование букв алфавита. Дедуктивный характер греческой математики, изобретенный Фалесом. Решение технических задач с помощью математики александрийского периода. Современные достижения в области математики.
реферат, добавлен 06.07.2009Признак коллинеарности векторов, их абсолютная длинна и скалярное произведение. Сумма векторов, правило треугольника, параллелограмма, многоугольника, параллелепипеда Смешанные произведения в координатах. Проекции вектора на ось. Координатные формулы.
реферат, добавлен 28.02.2011- 73. Бином Ньютона
Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.
презентация, добавлен 11.05.2016 Использование математической схемы при обучении учащихся решению задач. Применение занимательной комбинаторики для обучения младших школьников. Психологические особенности формирования универсальных учебных действий у учащихся начальных классов.
статья, добавлен 04.08.2021Рассмотрение основных типов соединений в комбинаторике. Теорема сложения вероятностей совместных событий. Рассмотрение функции распределения в теории вероятностей. Вариационные ряды и их характеристика. Свойства эмпирической функции распределения.
реферат, добавлен 18.04.2016