Комбинаторика

Сущность и составные части комбинаторики как ключевой ветви математики. Теория конфигураций и перечисления. Правило суммы и произведения. Основные свойства сочетаний. Решение задачи с помощью треугольника Паскаля. Комбинаторные конфигурации и блок-схемы.

Подобные документы

  • Исторические аспекты становления комбинаторики и основные утверждения, касающиеся конечных множеств. Решение задач с помощью правил суммы и произведения, а также методом пересекающихся множеств, кругов Эйлера, размещением или перестановкой без повторений.

    реферат, добавлен 15.11.2010

  • Комбинаторика - древнейшая и ключевая ветвь математики, изучающая дискретные объекты, множества и комбинации из заданного числа элементов. Перебор и построение дерева возможных вариантов. Комбинаторное правило умножения, примеры конфигураций и задач.

    презентация, добавлен 09.12.2014

  • Термин "комбинаторика" и его введение в математический обиход знаменитым Лейбницем. Использование комбинаторики при решении задач алгебры, геометрии, производящих функций. Основные правила – суммы и произведения. Формулы размещений без повторений.

    реферат, добавлен 24.04.2015

  • Краткая история и значение термина "комбинаторика". Разнообразие комбинаторных формул. Правило суммы и произведения, пересекающиеся множества. Круги Эйлера. Размещения и сочетания без повторений. Перестановки с повторениями. Примеры решения задач.

    реферат, добавлен 22.01.2013

  • Возникновение комбинаторики как науки, важные достижения и интерес к комбинаторным задачам. Значение комбинаторики в различных областях науки и производственной сферы. Общие формулы, позволяющие решать комбинаторные задачи, интересные примеры.

    реферат, добавлен 13.04.2014

  • История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.

    реферат, добавлен 12.11.2016

  • Предмет комбинаторики, ее определение как одного из раздела математики. История возникновения и развития комбинаторики как отдельного раздела. Особенности комбинаторики на Востоке, в Индии и в Китае: научные достижения математики и их многообразие.

    реферат, добавлен 07.07.2014

  • Типы событий: достоверные, невозможные, случайные. Понятие, предмет исследования комбинаторики, история возникновения и развития соответствующего научного направления. Применение методов теории вероятностей в разных сферах. Основные комбинаторные задачи.

    реферат, добавлен 03.05.2019

  • Формулировка комбинаторных правил суммы и произведения. Комбинаторные схемы выбора. Формулы для числа размещений и сочетаний в схемах выбора. Определения суммы, произведения, разности событий, противоположного события. События на диаграммах Эйлера-Венна.

    контрольная работа, добавлен 26.05.2012

  • Понятие о науке "Комбинаторика". Комбинаторика как раздел математики, изучающий размещения, перестановки, сочетания. Комбинаторика в различных областях жизнедеятельности: в литературе, на шахматной доске и в играх. Фигурные числа, старинные задачи.

    реферат, добавлен 13.05.2019

  • Формулы комбинаторики. Расчет количества перестановок и сочетаний объектов. Факториал - произведение всех натуральных чисел. Значение расположения элементов. Способы размещения, перестановки предметов и распределения между ними уникальных атрибутов.

    презентация, добавлен 10.11.2015

  • Использование формул комбинаторики при непосредственном вычислении вероятностей. Понятие и примеры перестановок, размещений и сочетаний. Выявление и оценка количества комбинаций, которые можно составить из элементов заданного конечного множества.

    презентация, добавлен 20.11.2011

  • Основы теории вероятностей, комбинаторики и статистики. Правила суммы и произведения. Непересекающиеся конечные множества. Арифметический треугольник паскаля и бином ньютона. Интервальная таблица частот. Методика преподавания элементов стохастики.

    учебное пособие, добавлен 30.04.2014

  • Рассмотрено формирование элементарной комбинаторики в различные промежутки времени. Описано получение независимых формул для подсчета сочетаний, размещений и перестановок элементов конечных дискретных множеств. Показан вклад Паскаля, Лейбница и Бернулли.

    статья, добавлен 26.04.2019

  • Комбинаторика как раздел дискретной математики, изучающий дискретные объекты, множества и отношения на них. История термина "комбинаторика", элементы этой области математики. Примеры решения комбинаторных задач: перестановки, размещения, сочетания.

    контрольная работа, добавлен 09.01.2019

  • Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.

    реферат, добавлен 31.01.2014

  • Биография и основные открытия Блеза Паскаля. Изучение роли понятия треугольника Паскаля при решении задач, его свойств, истории и построения. Применение разнообразных методов, рациональных способов решения задач с применением треугольника Паскаля.

    творческая работа, добавлен 06.02.2017

  • Понятие и характеристика треугольника Паскаля, история его открытия, специфика и предназначение биномиальных тождеств. Описание, отличительные черты методов включений и исключений. Использование производящих функций, сущность рекуррентных соотношений.

    реферат, добавлен 30.03.2016

  • Работы выдающегося математика, физика, философа и писателя Паскаля. Свойства и устройство треугольника Паскаля. Изображение равнобедренного треугольника точками. Построение треугольных чисел и их обобщения на случай пространств всех размерностей.

    презентация, добавлен 23.01.2012

  • Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.

    реферат, добавлен 13.01.2012

  • Построение комбинаторной теории Лейбницем. Использование ее при решении задач алгебры, геометрии. Интеграция комбинаторики в современную математику. Правила суммы и умножения. Описание урновой схемы как одной из простейших моделей теории вероятностей.

    контрольная работа, добавлен 17.06.2014

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Общие правила комбинаторики, определение понятий множества и факториала. Содержание разделов комбинаторики - перечислительного, экстремального и вероятностного. Понятие о размещении, перестановке и сочетании элементов. Решение комбинаторных задач.

    реферат, добавлен 21.12.2016

  • Числовые таблицы как предмет рассмотрения, общий метод построения арифметических таблиц. Изучение усеченного треугольника Паскаля и его дешифровки, особенности создания арифметической таблицы. Использования формулы Варинга для получения степенной суммы.

    статья, добавлен 10.09.2020

  • Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.

    учебное пособие, добавлен 18.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.