Использование искусственных нейронных сетей для диагностики заболеваний
Моделирование поведения живых существ в процессе исследований в области искусственного интеллекта. Особенности искусственного нейрона и структура нейронных сетей. Осуществление диагностики с помощью использования пакета Statistica Neural Networks.
Подобные документы
Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.
статья, добавлен 17.03.2021История создания нейрокомпьютеров, их преимущества, недостатки и практическое применение. Понятие нейронных сетей, их сущность, основные элементы, особенности формирования, виды, функции, задачи и назначение. Проблемы создания искусственного интеллекта.
курсовая работа, добавлен 07.12.2009Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.
статья, добавлен 16.05.2022Основы и принципы построения, обучения, функционирования, области применения и характеристики наиболее распространенных специализированных искусственных нейронных сетей (нейронных парадигм), предназначенных для решения различных классов прикладных задач.
учебное пособие, добавлен 09.09.2012Основные теории искусственных нейронных сетей. Место нейронных сетей в эволюции интеллектуальных систем управления. Преимущества применения нейроинформационных технологий при решении многих как нетрадиционных, так и традиционных задач управления и связи.
книга, добавлен 09.09.2012Нейронная сеть – система связанных и взаимодействующих друг с другом искусственных нейронов. В статье проведен анализ алгоритмов обучения нейронных сетей. Приведены последовательность действий при обучении этими алгоритмами, их достоинства и недостатки.
статья, добавлен 23.01.2021Представление знаний для решения интеллектуальных проблем. Принцип выбора потенциального дерева решения. Искусственные нейронные сети. Принцип работы искусственного нейрона, его формальная модель. Применение нейронных сетей, классификация нейронов.
учебное пособие, добавлен 26.08.2015Особенности разработки интеллектуальной системы распознавания текста на фотографиях и видеокадрах сложных графических сцен. Реализация методов для обнаружения и локализации текстовых областей, распознавания символов с помощью сверточных нейронных сетей.
статья, добавлен 23.02.2016Роль искусственного интеллекта в геоинформационных системах и его влияния на геоинформационную науку. Использование нейронных сетей и машинного обучения в геоинформационных системах. Применение программных средств для решения геоинформационных задач.
статья, добавлен 28.09.2024Основные понятия об искусственных нейронных сетях, дискретных преобразованиях Фурье и потоковых кодированиях информации. Формальная модель нейрона Мак-Каллока-Питтса и нейрона с альтернативными синапсами. Дискретное преобразование Фурье. Метод Хебба.
автореферат, добавлен 08.02.2013Рассмотрение методов прогнозирования нейронных сетей. Решение задачи обзора методов оконного прогнозирования на объеме страховых взносов. Изучение методов одношагового, многошагового прогнозирования. Применение метода окон для генерации обучающей выборки.
статья, добавлен 24.03.2018Направления развития искусственного интеллекта. Изобретение усовершенствованного танка и роботизированных автомобилей. Современные автомобили, управляемые с помощью компьютерных систем. Своевременное проведение диагностики технического состояния.
доклад, добавлен 24.01.2017Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.
дипломная работа, добавлен 10.12.2019Определение роли искусственного интеллекта в повседневной жизни. Интеллектуальные возможности современных машин. Моделирование сложных нелинейных отношений, состоящих из многих слоев. Обоснование необходимости регулирования искусственного интеллекта.
статья, добавлен 28.02.2019Методики компонентного проектирования нейронных сетей для обработки баз знаний, представленных семантическими сетями. Использование унифицированной модели нейронной сети и компонентном подходе к работе с нейронными сетями; библиотека НС-компонент.
статья, добавлен 06.03.2019Исследование содержания и принципы разрешения задачи разработки интеллектуальной системы распознавания текста на фотографиях и видеокадрах сложных графических сцен. Методика и этапы обнаружения и локализации текстовых областей с помощью нейронных сетей.
статья, добавлен 23.02.2016Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Методика прогнозирования селекционной ценности зерновых культур на стадии селекции. Алгоритм на основе искусственных нейронных сетей. Прогноз селекционной ценности пищевого сырья из 210 образцов тритикале коллекции урожая, оценка его эффективности.
статья, добавлен 17.11.2018История появления и развития искусственного интеллекта. Определение искусственного интеллекта как области компьютерной науки (раздел информатики), занимающейся автоматизацией разумного поведения. Понятие алгоритма и создание нейросетей и кибернетики.
реферат, добавлен 05.01.2014Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009- 96. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 - 97. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.
курсовая работа, добавлен 22.05.2018- 99. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 - 100. Прогнозирование котировок финансовых инструментов с помощью нейронных сетей и машинного обучения
Анализ существующих решений в прогнозировании котировок. Программные комплексы для автоматической торговли на основе нейронных сетей. Составление плана проектирования программного комплекса. Разработка резюме проектирования остальных обработчиков.
контрольная работа, добавлен 30.08.2016