Использование искусственных нейронных сетей для диагностики заболеваний
Моделирование поведения живых существ в процессе исследований в области искусственного интеллекта. Особенности искусственного нейрона и структура нейронных сетей. Осуществление диагностики с помощью использования пакета Statistica Neural Networks.
Подобные документы
Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.
статья, добавлен 26.04.2017Проблема создания искусственного интеллекта. Имитационные теории моделирования. Развитие нейронных сетей. Разработка семантических алгоритмов. Технологии самообучающихся нейронных сетей. Социально-этические аспекты создания искусственного интеллекта.
реферат, добавлен 28.06.2011Изучение понятия искусственного интеллекта - самообучающегося инструмента, усиливающего деятельность человека по генерации и принятию решений. Применение нейронных сетей. Основные области применения искусственного интеллекта. ИИ в вооруженных силах.
курсовая работа, добавлен 15.07.2012Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.
статья, добавлен 29.07.2018Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.
дипломная работа, добавлен 19.11.2015Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.
статья, добавлен 26.04.2019Понятие, структура и основные компоненты нейронных сетей, применение множества простых процессоров для их построения. Варианты наиболее распространенных архитектур искусственных НС. Правило вычисления сигнала активности и их распространение в сети.
лекция, добавлен 28.08.2013Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.
реферат, добавлен 15.03.2009Характеристика организации и функционирования искусственных нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Основные направления создания систем искусственного интеллекта при помощи компьютерных алгоритмов.
реферат, добавлен 13.10.2011Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.
статья, добавлен 12.07.2021- 15. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Обзор искусственных нейронных сетей, состоящих из множества взаимодействующих простых процессоров и представляющих собой устройства параллельных вычислений. Анализ структуры связей детали сетевой конструкции. Вычисления сигналов и значений нейронов.
лекция, добавлен 21.10.2013Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.
дипломная работа, добавлен 26.05.2018Методики и подходы построения систем искусственного интеллекта. Применение в задачах распознавания образов нейронных сетей. Имитационный подход для построения систем искусственного интеллекта, перспективы воплощения в информационные массивы и программы.
курсовая работа, добавлен 29.03.2016Перспективы развития искусственного интеллекта. Основные проблемы нейронных, экспертных и много-агентных сетей. Исследование генетических алгоритмов и моделей представления знаний. Применение искусственного интеллекта в промышленной и аграрной сфере.
контрольная работа, добавлен 22.07.2020История развития науки о искусственном интеллекте. Области применения исскуственного интеллекта. Некоторые сведения о мозге. Основные теории нейроподобных и нейтронных сетей. Нейроподобный элемент и нейроподобные сети. Классификация нейронных сетей.
реферат, добавлен 01.10.2009Исследование принципов организации нейроподобных сетей для решения задач искусственного интеллекта. Анализ архитектуры ассоциативно-проективной нейронной сетевой системы. Характеристика процедуры выбора части нейронов для передачи на верхний уровень.
лекция, добавлен 13.09.2017Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
статья, добавлен 29.04.2017Эволюция поколений символообрабатывающих ЭВМ. Этапы развитие искусственных нейронных сетей. Сравнение машины фон Неймана с биологической нейронной системой. Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей.
лекция, добавлен 06.09.2017Рассмотрение автоматизированного обнаружения дефектов на зданиях с использованием искусственного интеллекта. Изучение методов, включая YOLOv8 и ResNet, для оптимизации выбора зданий для ремонта. Применение нейронных сетей для точного выделения дефектов.
статья, добавлен 30.10.2024Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017