Метод координат в аналитической геометрии

Аналитическая геометрия как раздел математики, в котором изучают свойства геометрических объектов средствами алгебры и математического анализа при помощи метода координат. Основные понятия, принципы данного метода, условия его эффективного использования.

Подобные документы

  • Основные понятия векторной алгебры. Аналитическая геометрия в пространстве. Введение в математический анализ. Дифференциальное исчисление, неопределенные и определенные интегралы. Функции нескольких переменных. Ряды и дифференциальные уравнения.

    учебное пособие, добавлен 09.12.2016

  • Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.

    методичка, добавлен 09.04.2012

  • Построение уравнений прямой с направляющим и нормальным вектором. Условия перпендикулярности вектора. Построение уравнения прямой с угловым коэффициентом. Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

    презентация, добавлен 06.09.2017

  • Анализ использования результатов теоретического математического исследования. Рассмотрение процесса математизации технических наук как феномена при истории технических знаний в той или иной области. Главная особенность изучения математики инженером.

    статья, добавлен 27.02.2019

  • История возникновения неевклидовой геометрии. Основные понятия Лобачевского о пространственных структурных отношениях и их обобщение, области применения. Нахождение моделей плоскости и протяженности. Аксиома о параллельных прямых и уравнение сферы.

    реферат, добавлен 04.09.2014

  • Криволинейные системы координат. Векторы и тензоры, их преобразования при поворотах системы координат. Свойства тензоров второго ранга, символ Леви-Чивита. Преобразование тензорных величин при инверсии. Взаимно однозначное соответствие между переменными.

    дипломная работа, добавлен 18.09.2015

  • Сущность аксиомы как положения, принимаемого без логического доказательства в силу непосредственной убедительности. Аксиомы геометрии: история и ученые-разработчики. Общепринятый аксиоматический метод в математике и его понятие за пределами математики.

    доклад, добавлен 04.12.2008

  • Определение математики и анализ этапов ее развития: элементарная математика; математика переменных величин; аналитическая геометрия; дифференциальное и интегральное исчисление. Развитие математики в России в 18-19 ст. Достижения современной математики.

    реферат, добавлен 08.09.2015

  • Исследование особенностей фрактальной геометрии и ее приложений. Выявление классификации фракталов. Основные отрасли их применения в жизни человека в условиях новейших технологий. Установление взаимосвязи фрактальных свойств и природных объектов.

    статья, добавлен 15.02.2019

  • Решение практических задач математическими методами путем формулировки задачи, выбора метода исследования полученной математической модели, анализа полученного математического результата. Особенности построения и требования к математическим моделям.

    реферат, добавлен 03.12.2014

  • Исследование основных научных гипотез, раскрывающих математическую сущность декартовой системы координат и вычислений. Рассмотрение методов решения уравнений прямой на плоскости. Формульное выражение объекта при наличии заданной точки или отрезков.

    презентация, добавлен 01.09.2015

  • Определение положения точки в пространстве. Правая декартова, полярная и косоугольная системы координат. Способы измерения дуг. Определение координат точки в пространстве, окружности и ее радиуса. Построение сферической и цилиндрической системы координат.

    презентация, добавлен 12.10.2012

  • Проблема нахождения необходимых и достаточных условий в свойствах геометрических фигур, которая является актуальной в работе учителя математики. Методические рекомендации для преподавания темы "Необходимые и достаточные условия" из курса "Геометрия".

    статья, добавлен 27.02.2019

  • Рассмотрение математических моделей динамических объектов, представляющих собой линейные и нелинейные системы дифференциальных уравнений. Анализ результатов использования методов теории устойчивости, математического анализа, линейной и высшей алгебры.

    автореферат, добавлен 15.02.2018

  • Этапы развития математики как науки. Становление математики в Древней Греции, Индии, Средней Азии. Введение системы координат, методов измерения величин и понятия функции. Вклад русских ученых в развитие математики. Перспективы развития кибернетики.

    реферат, добавлен 18.09.2014

  • Решение заданий базового уровня по все модулям алгебры и геометрии в 9 классе. Закрепление знаний школьного курса математики в процессе обучения. Планирование работы участника экзамена. Освоение государственных Федеральных образовательных стандартов.

    презентация, добавлен 15.05.2014

  • Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.

    курс лекций, добавлен 17.01.2014

  • Изучение математики в определениях и терминах. Решение геометрии, механики и теоретической физики с абсолютной точностью. Арифметика рациональных чисел. Дифференциальное исчисление. Обоснование понятий и объектов математики как число, точка, прямая.

    статья, добавлен 26.01.2019

  • История возникновения геометрии и тригонометрии. Первые методы нахождения неизвестных параметров треугольника. История жизни знаменитых геометров. Теорема Пифагора. Теория пределов. Понятие прямоугольной системы координат. Геометрические фигуры.

    реферат, добавлен 15.01.2013

  • Геометрия - наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Определение роли, которую сыграла неевклидова геометрия в математике и теории геометризованной гравитации Гросмана-Гильберта-Эйнштейна.

    статья, добавлен 06.04.2019

  • История аксиоматического метода построения научных теорий, его использование при создании неевклидовых геометрий. Особенности эллиптической геометрии Римана. Новый взгляд ученых Н.И. Лобачевского, К.Ф. Гаусса, Я. Бойяи на геометрию; оценка открытия.

    статья, добавлен 26.04.2019

  • Определение коллинеарности векторов. Вычисление координат точки пересечения медиан и высот треугольника. Составление уравнения прямой, проходящей через его вершину параллельно стороне. Расчет площади основания пирамиды, используя произведения векторов.

    контрольная работа, добавлен 17.11.2017

  • Характеристика создания кафедры математического анализа в 1938 году. А.А. Фридман как автор теории расширяющейся вселенной и один из основоположников советской школы динамической метеорологии. Особенность появления кафедры высшей алгебры и геометрии.

    статья, добавлен 26.04.2019

  • Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.

    презентация, добавлен 13.04.2012

  • Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.

    шпаргалка, добавлен 23.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.