Метод координат в аналитической геометрии

Аналитическая геометрия как раздел математики, в котором изучают свойства геометрических объектов средствами алгебры и математического анализа при помощи метода координат. Основные понятия, принципы данного метода, условия его эффективного использования.

Подобные документы

  • Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.

    курсовая работа, добавлен 03.11.2018

  • Сущность и особенности начертательной геометрии. Первые идеи об ортогональном проецировании пространственных фигур на плоскость. Применение теории геометрических преобразований. История возникновения и развития начертательной геометрии в России.

    реферат, добавлен 29.04.2018

  • Понятие тригонометрии как раздела математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Применение науки в древности для расчётов в астрономии, геодезии и архитектуре. Особенности ее возникновения и стимул для развития.

    реферат, добавлен 28.09.2014

  • Биография Н.И. Лобачевского - автора фундаментальных работ в области неевклидовой геометрии, алгебры, приближенного решения уравнений. Годы учёбы, преподавательская деятельность в университете. Научные труды, суть и модели геометрии Лобачевского.

    презентация, добавлен 25.10.2021

  • Угол между единичными векторами и площадь треугольника, построенного на векторах. Длина высоты параллелепипеда. Расчет координат основания высоты и уравнение биссектрисы внутреннего угла. Инвариантные точки и инвариантные прямые аффинного преобразования.

    контрольная работа, добавлен 20.04.2015

  • Обоснование роли математической науки в профессиональной жизнедеятельности инженера. Очерк возникновения и понимания самостоятельного положения математики. Становление проективной и аналитической геометрии. Анализ профессии и обязанностей инженера.

    реферат, добавлен 17.10.2013

  • Основные принципы построения и преподавания науки. Математические модели, отражающие объективные свойства и связи. Формирование понятия геометрической фигуры и числа как идеализации реальных объектов. Роль математики в интеллектуальном развитии личности.

    реферат, добавлен 07.06.2015

  • Методы отображения пространственных объектов на плоскости. Способы графического и аналитического решения различных геометрических задач. Центральное проецирование. Сущность метода проекции с числовыми отметками. Взаимное расположение точки и прямой.

    курс лекций, добавлен 25.12.2010

  • Роль математики в современной науке. Построенная Ньютоном модель механического движения как самый важный источник математического анализа, изучающего производную и ее свойства. Потребность развития математической науки и ее практических применений.

    статья, добавлен 09.04.2019

  • Понятие стереометрии (геометрия в пространстве) как раздела геометрии, изучающего положение, форму, размеры и свойства различных пространственных фигур. Анализ возникновения и развития стереометрии, ее применение в практической деятельности человека.

    статья, добавлен 24.02.2019

  • Раздел геометрии, в котором изучаются свойства фигур в пространстве. Основные фигуры: плоскость, прямая, точка. Геометрические тела: куб, тетраэдр, параллелепипед. Исходное положение научной теории, принимаемое без доказательства, следствия из аксиом.

    презентация, добавлен 13.04.2012

  • Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.

    учебное пособие, добавлен 06.09.2017

  • Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.

    курс лекций, добавлен 02.05.2014

  • Исследование механизма решения задач С3 при помощи метода интервалов. Метод интервалов для рациональных неравенств. Метод равносильных переходов. Метод равносильных переходов. Характеристика метода сравнения основания с единицей и рационализации.

    презентация, добавлен 03.05.2017

  • Изучение взаимосвязи геометрии и архитектуры. Примеры геометрических зданий с использованием цилиндра, параллелепипеда и пирамиды. Симметрия и дисимметрия, соотношения и пропорции целого и частей в создании пространственно-объемной архитектурной формы.

    презентация, добавлен 10.04.2015

  • Методика построения прямоугольных декартовых координат. Абсцисса как число, выражающее в некотором масштабе расстояние точки от координатной оси. Характеристика основных свойств векторного сложения. Алгоритм смешанного произведения трех векторов.

    презентация, добавлен 31.10.2016

  • Особенности разработок математики в арифметическо-алгебраическом направлении. Приемы определения площадей земельных участков. Самостоятельные работы русских ученых в области математики и геометрии. История математических наук в русских университетах.

    реферат, добавлен 21.08.2009

  • Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.

    статья, добавлен 22.05.2017

  • Определение координат точки при переходе от одной системы координат к другой. Связь между старыми и новыми координатами при повороте координатных осей на некоторый угол. Кривые второго порядка. Уравнения окружности, эллипса, гиперболы и прямой общих точек

    лекция, добавлен 26.01.2014

  • Свойства углов при параллельных прямых. Некоторые аксиомы планиметрии. Соотношения между сторонами и углами треугольника. Значения синуса, косинуса и тангенса некоторых углов. Свойства окружности, признаки параллелограмма. Прямоугольная система координат.

    шпаргалка, добавлен 14.01.2016

  • Суть ортонормированной (декартовой) системой координат, в которой единицы измерения по всем осям равны друг другу. Действия над векторами в координатной форме, вычисление направляющих косинусов. Уравнение окружности, общее преобразование систем координат.

    контрольная работа, добавлен 15.05.2011

  • Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.

    учебное пособие, добавлен 13.04.2019

  • Решение системы линейных уравнений средствами матричного исчисления и с помощью правила Крамера. Вычисление алгебраических дополнений определителя. Сущность метода Гаусса. Формула площади треугольника. Расчет координат нормального вектора плоскости.

    контрольная работа, добавлен 21.01.2012

  • Понятие многогранников в геометрии. Основное определение понятия пирамиды. Определение вершины, ребер, боковых граней пирамиды, ее основания и правила их нахождения. Основные свойства правильной пирамиды, апофемы, усеченной пирамиды и тетраэдра.

    презентация, добавлен 26.04.2011

  • Системы линейных уравнений и неравенств. Аналитическая геометрия на плоскости. Числовая последовательность и ее предел. Основные теоремы теории вероятностей. Первообразная и неопределенный интеграл. Основы математической статистики. Закон больших чисел.

    методичка, добавлен 23.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.