Нейронная сеть на основе гомеостатических механизмов управления
Понятие искусственных нейронных сетей, способы обработки информации человеческим мозгом. Разработка концепции гомеостатической искусственной нейронной сети на основе представлений о гомеостатических механизмах обработки информации в естественных системах.
Подобные документы
Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.
статья, добавлен 21.05.2021Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.
дипломная работа, добавлен 12.01.2012Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.
статья, добавлен 30.05.2017Описание существующих видов нейронных сетей. Выявление их достоинств и недостатков. Основные возможности программного продукта Matlab. Моделирование и обучение нейронной сети на основе созданных дескрипторов для каждого символа английского алфавита.
дипломная работа, добавлен 07.08.2018- 56. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.
статья, добавлен 16.05.2022Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009Совершенствование инструментария по сбору, обработке и анализу информации. Описание такой аналитической технологии на основе использование искусственных нейронных сетей при проведении анализа в целях реализации управления правоохранительной сферой.
статья, добавлен 03.05.2019Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.
статья, добавлен 25.03.2019Разработка технологического процесса автоматизированной обработки информации на основе типовых решений. Основные показатели производственной деятельности предприятия. Организация сбора, размещения, хранения, накопления, преобразования и передачи данных.
методичка, добавлен 10.04.2012Актуальные проблемы выделения изображений движущихся объектов на зашумленном фоне, фильтрации помех, оценки скорости объекта, его идентификации и сопровождения. Особенности систем обработки видеоизображений, построенные с применением нейросетевых методов.
статья, добавлен 02.02.2019Нейронная сеть – система связанных и взаимодействующих друг с другом искусственных нейронов. В статье проведен анализ алгоритмов обучения нейронных сетей. Приведены последовательность действий при обучении этими алгоритмами, их достоинства и недостатки.
статья, добавлен 23.01.2021Методика прогнозирования селекционной ценности зерновых культур на стадии селекции. Алгоритм на основе искусственных нейронных сетей. Прогноз селекционной ценности пищевого сырья из 210 образцов тритикале коллекции урожая, оценка его эффективности.
статья, добавлен 17.11.2018Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Формализация вычислительного процесса и рабочей нагрузки на ЛВС на основе аппарата сетевого планирования. Расчет параметров вероятностного графа реализации ВП. Имитационная модель распределенной обработки информации в локальных вычислительных сетях.
статья, добавлен 29.01.2019Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.
статья, добавлен 26.04.2019Изучены вопросы формирования массива данных для построения искусственной нейронной сети, предназначенной для поиска взаимосвязей между социальными и экономическими параметрами развития регионов России. Исследования в области региональной компаративистики.
статья, добавлен 01.09.2021Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).
курсовая работа, добавлен 04.04.2009Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.
статья, добавлен 28.10.2020История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.
курсовая работа, добавлен 16.12.2016- 73. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 Алгоритм функционирования нейронных сетей, их внутренняя структура и компоненты, а также критерии оценки качества. Максимизация взаимной информации двух выходов, получающих информацию от двух смежных, не пересекающихся областей одного изображения.
курсовая работа, добавлен 09.01.2018- 75. Нейронные сети
Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.
реферат, добавлен 09.06.2016