Нейронная сеть на основе гомеостатических механизмов управления

Понятие искусственных нейронных сетей, способы обработки информации человеческим мозгом. Разработка концепции гомеостатической искусственной нейронной сети на основе представлений о гомеостатических механизмах обработки информации в естественных системах.

Подобные документы

  • Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.

    статья, добавлен 21.05.2021

  • Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.

    автореферат, добавлен 29.03.2018

  • История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.

    дипломная работа, добавлен 12.01.2012

  • Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.

    статья, добавлен 30.05.2017

  • Описание существующих видов нейронных сетей. Выявление их достоинств и недостатков. Основные возможности программного продукта Matlab. Моделирование и обучение нейронной сети на основе созданных дескрипторов для каждого символа английского алфавита.

    дипломная работа, добавлен 07.08.2018

  • История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.

    контрольная работа, добавлен 18.02.2018

  • Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.

    статья, добавлен 16.05.2022

  • Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.

    курсовая работа, добавлен 30.11.2009

  • Совершенствование инструментария по сбору, обработке и анализу информации. Описание такой аналитической технологии на основе использование искусственных нейронных сетей при проведении анализа в целях реализации управления правоохранительной сферой.

    статья, добавлен 03.05.2019

  • Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.

    лекция, добавлен 26.09.2017

  • Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.

    статья, добавлен 25.03.2019

  • Разработка технологического процесса автоматизированной обработки информации на основе типовых решений. Основные показатели производственной деятельности предприятия. Организация сбора, размещения, хранения, накопления, преобразования и передачи данных.

    методичка, добавлен 10.04.2012

  • Актуальные проблемы выделения изображений движущихся объектов на зашумленном фоне, фильтрации помех, оценки скорости объекта, его идентификации и сопровождения. Особенности систем обработки видеоизображений, построенные с применением нейросетевых методов.

    статья, добавлен 02.02.2019

  • Нейронная сеть – система связанных и взаимодействующих друг с другом искусственных нейронов. В статье проведен анализ алгоритмов обучения нейронных сетей. Приведены последовательность действий при обучении этими алгоритмами, их достоинства и недостатки.

    статья, добавлен 23.01.2021

  • Методика прогнозирования селекционной ценности зерновых культур на стадии селекции. Алгоритм на основе искусственных нейронных сетей. Прогноз селекционной ценности пищевого сырья из 210 образцов тритикале коллекции урожая, оценка его эффективности.

    статья, добавлен 17.11.2018

  • Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.

    статья, добавлен 26.04.2019

  • Формализация вычислительного процесса и рабочей нагрузки на ЛВС на основе аппарата сетевого планирования. Расчет параметров вероятностного графа реализации ВП. Имитационная модель распределенной обработки информации в локальных вычислительных сетях.

    статья, добавлен 29.01.2019

  • Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.

    статья, добавлен 26.04.2019

  • Изучены вопросы формирования массива данных для построения искусственной нейронной сети, предназначенной для поиска взаимосвязей между социальными и экономическими параметрами развития регионов России. Исследования в области региональной компаративистики.

    статья, добавлен 01.09.2021

  • Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).

    курсовая работа, добавлен 04.04.2009

  • Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.

    статья, добавлен 28.10.2020

  • История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.

    курсовая работа, добавлен 16.12.2016

  • Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.

    реферат, добавлен 20.02.2009

  • Алгоритм функционирования нейронных сетей, их внутренняя структура и компоненты, а также критерии оценки качества. Максимизация взаимной информации двух выходов, получающих информацию от двух смежных, не пересекающихся областей одного изображения.

    курсовая работа, добавлен 09.01.2018

  • Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.

    реферат, добавлен 09.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.