Характеристика многочленов

Понятие и типы многочленов, принципы и закономерности их формирования. Свойства делимости многочленов. Метод неопределённых коэффициентов. Теорема Безу и ее следствия. Разложения многочлена на множители. Степень многочленов. Наименьшее общее кратное.

Подобные документы

  • Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.

    лекция, добавлен 10.04.2016

  • Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.

    курс лекций, добавлен 27.08.2017

  • Получение формулы численного дифференцирования при помощи первого интерполяционного многочлена Ньютона. Построение формул численного дифференцирования и аппроксимации функции. Построение интерполяционного многочлена первой степени. Теорема Больцано-Коши.

    контрольная работа, добавлен 22.12.2014

  • Методы решения алгебраических уравнений 3-й и 4-й степени с одним неизвестным. Доказательство теоремы Абеля. Понятие группы и ее свойства. Теорема алгебры комплексных чисел. Функции комплексного переменного. Римановы поверхности сложных выражений.

    книга, добавлен 28.12.2013

  • Системы линейных дифференциальных уравнений. Выпуклое и нелинейное программирование. Корни характеристического многочлена. Совокупность серий для всех собственных чисел матрицы. Метод неопределенных коэффициентов. Неподвижные точки и отображения.

    учебное пособие, добавлен 26.04.2014

  • Сущность и общее представление тригонометрической функции. Понятие и общая характеристика показательной функции, ее основные свойства и признаки, особенности графического изображения и подходы к анализу. Разработка и принципы разрешения уравнений.

    разработка урока, добавлен 05.12.2014

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

  • Характеристика особенностей уравнений с параметрами. Ознакомление со способами нахождения абсциссы и построения "склеенных" гипербол. Анализ методов выделения в уравнении полных квадратов и разложения его на множители. Изучение неравенств с параметрами.

    контрольная работа, добавлен 29.05.2017

  • Понятие двойного интеграла, условия его существования, свойства и методы вычисления. Теорема о среднем. Вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Интегрирование функции в области d.

    презентация, добавлен 17.09.2013

  • Исследование неоднородности свойств чётных составных чисел. Универсальное правило определения делимости. Содержание алгоритма нахождения простых чисел. Суммирование и вычитание цифр. Способы определения делимости нечетного числа с окончаниями 1, 3, 7.

    реферат, добавлен 29.09.2012

  • Изучение геометрического смысла предела. Старшая степень числителя и знаменателя. Пределы с неопределенностью и метод их решения. Разложение числителя и знаменателя на множители. Использование формулы разности квадратов. Решение квадратных уравнений.

    лекция, добавлен 04.03.2014

  • Понятие призмы, ее элементы (основания, боковые грани, высота, диагональ и др.) и виды. Понятие прямой, наклонной и правильной призмы. Свойства многогранника, вычисление площадей полной и боковой поверхностей. Теорема призмы и ее доказательство.

    презентация, добавлен 15.02.2015

  • Определение предела последовательности, теорема о единственности предела. Классификация пределов, теорема о предельном переходе в неравенствах и теорема о двух милиционерах. Примеры интегрирования по частям, решение простых и неопределенных интегралов.

    контрольная работа, добавлен 19.05.2014

  • Изучение теоремы о верхнем и нижнем разложении матрицы, имеющей ненулевую диагональ. Ознакомление с расчетными формулами, используемыми для построения матриц. Очерк математических выражений по методу Гаусса и алгоритмы для ряда системных уравнений.

    презентация, добавлен 30.10.2013

  • Основная характеристика предельного значения функции. Главный анализ строения базы окрестностей бесконечно удаленной точки. Проведение исследования понятия предела числовой последовательности. Особенность разложения числителя и знаменателя на множители.

    доклад, добавлен 07.10.2016

  • Доказательство подлинности вспомогательной теоремы Ферма. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных. Доказательство бесконечности регулярных простых чисел.

    статья, добавлен 03.03.2018

  • Понятие первообразной от функции. Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Задачи о нахождении площади плоской фигуры. Несобственный интеграл.

    лекция, добавлен 12.04.2012

  • Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.

    курсовая работа, добавлен 17.01.2011

  • Наикратчайшее элементарное доказательство последней теоремы Ферма. Доказательство делимости числителей чисел Бернулли. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных.

    статья, добавлен 03.03.2018

  • Начало аксиоматической теории высказываний: первоначальные понятия, система аксиом, правило вывода. Общая характеристика вывода и его свойства. Теорема о дедукции и следствия из нее, сферы практического применения. Основные производные данного правила.

    лекция, добавлен 07.12.2014

  • Анализ подхода, основанного на приближении таблично заданной функции с помощью алгебраического интерполяционного многочлена Лагранжа. Построения формулы для вычисления второй производной с использованием аппроксимации. Метод неопределенных коэффициентов.

    презентация, добавлен 30.10.2013

  • Совершенствование практических умений и навыков при разложении многочлена на множители методом вынесения общего множителя за скобки. Развитие устной математической речи. Воспитание самостоятельности, интереса к предмету. Закрепление изученного материала.

    конспект урока, добавлен 13.04.2016

  • Разделы теории групп: конечные, абелевы, разрешимые и др. Теорема о единственности разложения в сумму примарных абелевых групп по разным простым числам. Накрывающее свойство свободной абелевой группы конечного ранга и доказательство структурной теоремы.

    курсовая работа, добавлен 15.01.2015

  • Доцільність створення методу редукції матриць над кільцями на основі поняття стабільного рангу з метою розв'язання відомих задач Хенріксена як для некомутативних, так і для комутативних кілець. Дослідження та встановлення нових властивостей кілець Безу.

    автореферат, добавлен 07.08.2014

  • Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.

    курс лекций, добавлен 20.08.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.