Характеристика многочленов
Понятие и типы многочленов, принципы и закономерности их формирования. Свойства делимости многочленов. Метод неопределённых коэффициентов. Теорема Безу и ее следствия. Разложения многочлена на множители. Степень многочленов. Наименьшее общее кратное.
Подобные документы
Понятие алгебраического уравнения четвертой степени, история его решения. Пример решения биквадратного и возвратного уравнений четвертой степени. Решение Декарта—Эйлера. Анализ схемы метода Феррари, разложения на множители и кубическая резольвента.
доклад, добавлен 04.10.2013Определенный интеграл по Риману. Теоремы о существовании интеграла от непрерывной и монотонной функции. Неравенства и теорема о среднем. Приближенное вычисление определенных интегралов. Метод параболических трапеций (метод Симпсона). Суть числовых рядов.
контрольная работа, добавлен 20.02.2012Основная теорема о поверхностях второго порядка. Типы поверхностей второго порядка. Цилиндрические поверхности и их общее уравнение. Уравнение конической поверхности. Поверхности вращения. Уравнение поверхности вращения, образованной вращением кривой.
контрольная работа, добавлен 13.11.2011Схема Гаусса с выбором главного элемента. Метод единственного деления. Метод квадратного корня. Метод Халецкого. Итерационные методы. Методы получения характеристического многочлена. Частичная проблема собственных значений. Метод вращения с преградами.
методичка, добавлен 15.09.2012- 105. Схема Горнера
Схема Горнера как алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Решение уравнений высшей степени (деление многочлена с помощью схемы Горнера). Ее использование для деления многочлена на бином.
презентация, добавлен 18.12.2018 - 106. Теория алгоритмов
История теории алгоритмов. Определение, свойства и типы алгоритмов. Действия с обыкновенными дробями. Алгоритмы в изучении различных школьных предметов. Разложение на простые множители. Арифметические действия с положительными и отрицательными числами.
реферат, добавлен 02.12.2013 Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Нахождение площади плоской фигуры. Существование определённого интеграла. Дифференциальные уравнения.
контрольная работа, добавлен 30.01.2012- 108. Теорема Фалеса
Теорема Фалеса как одна из теорем планиметрии. Равенство отрезков на обеих секущих между собой. Способ определения расстояния от берега до видимого корабля с помощью свойства подобия треугольников. Установление высоты пирамиды Хеопса Фалесом по тени.
презентация, добавлен 25.10.2011 Описание жадного алгоритма, его линейная временная сложность. Теорема Радо–Эдмонса, комбинаторный объект матроида и матроиды трансверсалей. Теорема Дж. Эдмондса и Д. Фалкерсона. Жадный алгоритм для матроида трансверсалей. Классическая теорема Ф. Холла.
презентация, добавлен 26.09.2017Понятие целых и дробных уравнений. Определение многочлена стандартного вида. Понятие уравнения с одной переменной. Основные методы решения целых уравнений. Понятие и определение степени уравнения. Определение корня линейного и квадратного уравнения.
презентация, добавлен 14.01.2015Понятие криволинейного интеграла, его функции и свойства. Три интегральных суммы криволинейного интеграла первого и второго рода, их взаимосвязь. Вычисление перемещения материальной точки вдоль кривой. Теорема существования криволинейного интеграла.
реферат, добавлен 20.10.2014Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.
статья, добавлен 18.01.2021Использование свойств конечных сумм, для получения модификации неравенств Чебышёва. Характеристическое свойство арифметической прогрессии. Формулы суммирования, выводимые способом математической индукции. Сущность метода неопределённых коэффициентов.
курсовая работа, добавлен 28.05.2014Обыкновенные дифференциальные уравнения, их характеристика и свойства. Типы уравнений с разделяющимися переменными, их структура и требования к решению. Достаточные признаки разложимости в ряд Фурье, порядок определения интегралов. Теорема Ляпунова.
курс лекций, добавлен 05.03.2016Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.
презентация, добавлен 27.09.2017Понятие прямоугольного треугольника, его характеристика и отличительные свойства. Теорема о сумме острых углов прямоугольного треугольника. Закрепление знаний учащихся в ходе решения тригонометрических задач по определению длины катетов и гипотенузы.
презентация, добавлен 30.10.2014Понятие абстрактной группы. Свойства алгебраических операций. Реализация абстрактной группы как группы преобразований. Доказательство теоремы Коши, Лагранжа. Теорема о подгруппах конечной циклической группы. Смежные классы, классы сопряженных элементов.
реферат, добавлен 24.06.2010Доказательство делимости чисел при сравнении по ненулевому рациональному модулю. Основные свойства сравнения по ненулевому рациональному модулю натуральных чисел. Описание отличия сравнимости по ненулевому рациональному модулю от обычного сравнения.
статья, добавлен 03.03.2018Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.
контрольная работа, добавлен 27.11.2013Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.
реферат, добавлен 31.03.2014Доказательство делимости чисел при сравнении по ненулевому рациональному модулю. Основные свойства сравнения по ненулевому рациональному модулю натуральных чисел. Описание отличия сравнимости по ненулевому рациональному модулю от обычного сравнения.
статья, добавлен 03.03.2018- 122. Теорема Коши-Бине
Назначение матриц в системах линейных уравнений, операции над матрицами, правила их сложения матриц и умножения на скаляр, транспонирование произведения двух матриц. Понятие и свойства определителя квадратной матрицы, доказательство теоремы Коши-Бине.
курсовая работа, добавлен 11.01.2015 Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.
шпаргалка, добавлен 01.05.2009Определение первообразной функции и неопределенного интеграла. Геометрический смысл неопределенного интеграла. Теорема о разложении правильной рациональной дроби на простейшие дроби. Метод неопределенных коэффициентов. Формула замены переменной.
контрольная работа, добавлен 27.08.2013Теорема Чевы и Менелая, их особенности. Методика обучения решению задач в период предпрофильной подготовки. Изучение темы "Теорема Менелая и теорема Чевы" в курсе геометрии 10 класса. Применение теорем Менелая и Чевы в решении стереометрических задач.
презентация, добавлен 20.01.2016