Некоторые вопросы теории меры

Идея построения теории меры для вычисления площади плоской фигуры. Особенности и примеры вычисления жордановой меры множеств. Определение меры ограниченного множества, составленного из точек прямой, с точки зрения меры Лебега. Проблемы теории меры.

Подобные документы

  • Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.

    контрольная работа, добавлен 14.09.2010

  • Типичные ошибки, допускаемые в символической записи на языке теории множеств предложений геометрического содержания. Примеры заданий, направленных на формирование умения корректно использовать символы языка теории множеств при записи предложений.

    статья, добавлен 24.11.2022

  • Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.

    реферат, добавлен 31.01.2014

  • Понятие и общая характеристика различных типов точечных множеств: ограниченных сверху и снизу, неограниченных. Определение верхней и нижней грани. Расположение точечного множества вблизи какой-либо точки на прямой. Открытые и замкнутые множества.

    курсовая работа, добавлен 19.11.2014

  • Описание упорядоченных структур в теории множеств с самопринадлежностью. Счетность количества обозначений. Несчетность множества точек на прямой и счетность количества n обозначений чисел на отрезке. Классические утверждения теоремы Гёделя о нечетности.

    статья, добавлен 26.04.2019

  • Анализ поведения объекта управления под действием системы факторов. Выявление зависимостей между структурой себестоимости и объемами производства продукции. Выполнение когнитивной структуризации и формализации. Построение матрицы абсолютных частот.

    статья, добавлен 26.04.2017

  • Значение старинных мер измерения величин на Руси. Единицы длины иностранного и русского происхождения. Особенности измерения объема и массы в древнерусской системе мер. История ее упорядочения. Эталоны для определения площади земельных участков.

    контрольная работа, добавлен 26.03.2018

  • Определение отсутствия в теории множеств с самопринадлежностью парадокса Мириманова, парадокса Кантора, парадокса Бурали–Форти. Обоснование утверждения о том, что объединение порядковых чисел является порядковым числом - основы парадокса Бурали–Форти.

    статья, добавлен 26.04.2019

  • Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.

    курс лекций, добавлен 22.11.2015

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Множество как одно из ключевых понятий математики, в частности, теории множеств и логики. Операции разности и дополнения и их антидистрибутивность относительно операций объединения и пересечения. Множества высших мощностей. Свойства операции объединения.

    реферат, добавлен 20.09.2015

  • Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

    лекция, добавлен 29.09.2013

  • Изучение малых и больших старинных мер длины. Рассмотрение мер длины стран Европы, используемых на Руси. Сравнение старинных мер измерения с метрическими мерами. Примеры мер длины в произведениях русских поэтов и писателей, пословицах и поговорках.

    реферат, добавлен 22.04.2019

  • Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.

    курсовая работа, добавлен 20.10.2010

  • Понятие термина "геометрия", история возникновения и развития. Геометрия Эйнштейна — Минковского. Роль геометрии в естествознании. Термин “площадь” и ее основные измерения. Старые меры площадей. Теоремы площадей фигур и способы решения задач по ним.

    реферат, добавлен 04.12.2008

  • Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.

    методичка, добавлен 15.10.2016

  • Анализ идеи системного обобщения понятий математики, в частности теории информации, основанных на теории множеств, заменой понятия множества на содержательное понятие системы. Ее реализация в разработке автоматизированного системно-когнитивного анализа.

    статья, добавлен 25.04.2017

  • Способ обоснования существования актуальных бесконечно малых чисел, основанный на понятии двузначной меры. Аксиоматический подход к понятию расширенной числовой прямой. Арифметика бесконечно малых чисел. Основные теоремы дифференциального исчисления.

    монография, добавлен 03.07.2014

  • Сущность аллергии, характеристика основных симптомов ее проявления. Применение диеты как способа избавления от аллергии. Особенности лечебного питания при бронхиальной астме, поллинозе. Специфика профилактики и дополнительные меры предохранения.

    реферат, добавлен 17.12.2013

  • Введение в теорию множеств. Задачи, связанные с операциями над конечными множествами. Декартово произведение множеств. Основные элементарные функции. Понятия и величины дискретной математики. Элементы теории вероятностей и математической статистики.

    лекция, добавлен 07.05.2014

  • Современные рассуждения, демонстрирующие противоречивость наивной теории множеств. Предложенный Б. Расселом "парадокс Тристрама Шенди". Нетривиальные следствия аксиомы выбора. Рассмотрение рядов квадратов натуральных чисел, степеней двойки, факториалов.

    статья, добавлен 15.02.2019

  • Изучение одного из возможных подходов к системному обобщению математического понятия множества, а именно подхода, основанного на системной теории информации. Использование теории как основы для обобщения и создания "математической теории систем".

    статья, добавлен 26.04.2017

  • Понятие и назначение определителей, основные положения их теории, методы вычисления и свойства. Минор и алгебраическое дополнение элемента определителя. Метод эффективного понижения порядка. Сущность матриц и порядок проведения операций над ними.

    контрольная работа, добавлен 26.07.2009

  • Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.

    статья, добавлен 26.04.2019

  • Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.

    методичка, добавлен 29.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.