Интеграл и его применение

Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.

Подобные документы

  • Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.

    курсовая работа, добавлен 27.11.2018

  • Сведения из теории вероятностей и случайных процессов. Броуновское движение и процесс Пуассона. Простые инвестиционные стратегии и стохастические интегралы. Семимартингалы, расширение классов интегралов. Понятие о квадратической вариации и ковариации.

    методичка, добавлен 08.09.2015

  • Численный метод решения интегрального уравнения с ядром, имеющим особенности первого порядка по обеим переменным. Аппроксимация кусочно-линейными функциями. Расчет коэффициентов методом коллокации. Вычисление сингулярных интегралов от базисных функций.

    статья, добавлен 13.05.2017

  • Понятия поверхностных интегралов первого и второго рода, связь между ними, их геометрический и физический смысл, основные свойства и приложения. Задачи, связанные с функциями, определенными на поверхностях, вычисление массы материальной поверхности.

    лекция, добавлен 29.09.2014

  • Основные этапы и закономерности решения дифференциальных уравнений. Порядок построения гармонического ряда и его анализ. Почленное интегрирование заданных значений по признаку сходимости Коши. Отличительные черты собственного и несобственного интеграла.

    контрольная работа, добавлен 29.03.2018

  • Первообразная функция, теорема о первообразных. Неопределенный интеграл, свойства, таблица. Замена переменной, интегрирование по частям. Интегрирование дробей, выражений, содержащих тригонометрические функции. Определенный интеграл, геометрический смысл.

    реферат, добавлен 12.03.2010

  • Понятие определенного, двойного и тройного интегралов. Характеристика теорем существования двойного и тройного интегралов. Сущность теоремы о среднем значении для двойного интеграла. Условия перехода пределов интегрирования к полярным координатам.

    контрольная работа, добавлен 27.08.2013

  • Нахождение частных производных, градиента и эластичности функции, исследование ее на экстремум. Вычисление зависимости величины банковской ставки от срока вклада, интервала сходимости степенных рядов. Решение дифференциальных уравнений и задачи Коши.

    контрольная работа, добавлен 07.03.2015

  • Представление бета и гамма функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов. Бета и гамма функции. Производная гамма функции. Вычисление интегралов формула Стирлинга, примеры вычислений.

    курсовая работа, добавлен 30.10.2010

  • Методика введения определений тригонометрических функций углов и изучения тригонометрических функций в курсе алгебры. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению.

    реферат, добавлен 06.03.2022

  • Понятие первообразной и особенности теоремы о ней. Неопределенный интеграл и его свойства. Замена переменной и интегрирование по частям в неопределенном интеграле. Интегрирование дробей и иррациональных выражений. Вычисление площадей плоских фигур.

    реферат, добавлен 20.10.2010

  • История рождения метода Монте-Карло, его дальнейшее развитие и современность, использование в численном интегрировании (одномерный и многомерный случаи), для вычисления кратных интегралов (на примере двукратных интегралов) и практическое применение.

    курсовая работа, добавлен 29.08.2010

  • Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.

    курсовая работа, добавлен 15.03.2013

  • Рассмотрение методов вычисления определенных интегралов, подынтегральных функций которых не являются элементарными. Характеристика метода прямоугольников. Исследование метода трапеций и парабол. Оценка точности вычисления "неберущихся" интегралов.

    реферат, добавлен 05.05.2016

  • Линейная и векторная алгебра, уравнения прямой на плоскости. Кривые второго порядка, дифференциальная геометрия и предел функции в точке. Виды интегралов и дифференциальные уравнения в частных производных. Дискретная математика и теория вероятностей.

    учебное пособие, добавлен 11.02.2015

  • Нахождение аппроксимирующих функций с помощью теории рядов. Достаточные признаки сходимости. Интегральный признак Коши, Лейбница и Даламбера. Теорема Абеля. Дифференцирование и интегрирование. Разложение основных элементарных функций в ряд Маклорена.

    лекция, добавлен 18.10.2013

  • Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.

    контрольная работа, добавлен 10.05.2016

  • Изучение видов определенного и несобственного интегралов, анализ их актуальности использования в математике. Выведение формулы Валлиса, ее применение для интеграла Эйлера-Пуассона. Способ получения формулы Тейлора с остаточным членом в интегральной форме.

    курсовая работа, добавлен 21.01.2010

  • Вычисление неопределенных и определенных интегралов, проверка результатов дифференцированием. Определение площади фигуры, ограниченной параболой и прямой. Дифференциальное исчисление функций нескольких переменных. Примеры решений системы уравнения.

    контрольная работа, добавлен 16.04.2012

  • Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.

    контрольная работа, добавлен 09.04.2016

  • Вычисление определенных интегралов по формуле Ньютона-Лейбница. Методы численного интегрирования. Суть метода прямоугольников. Метод средних прямоугольников. Выполнение "прямого хода" и "обратного хода". Задача Дирихле для уравнения Лапласа методом сеток.

    контрольная работа, добавлен 15.06.2013

  • Понятие интеграла от функции двух, трех и большего числа переменных, основная методика их выражения в декартовых координатах. Двойные и тройные интегралы, их свойства и способы вычисления. Вычисление криволинейных интегралов с помощью формулы Грина.

    лекция, добавлен 29.09.2014

  • Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.

    контрольная работа, добавлен 09.04.2012

  • Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.

    контрольная работа, добавлен 12.01.2013

  • Рассмотрение природы интеграла. Особенности определения первообразной, дифференциала функции и основы специального способа выбора точек на частных отрезках разбиения при помощи интеграла Ньютона-Лейбница. Вычисление функции в интегральной сумме Римана.

    статья, добавлен 25.10.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.