Интеграл и его применение

Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.

Подобные документы

  • Терминология и свойства тройных интегралов, вычисление с помощью массы неоднородного тела, а также декартовых, цилиндрических и сферических координат. Применение тройных интегралов для расчета координат центра тяжести, инерции и кинетической энергии тела.

    реферат, добавлен 10.11.2010

  • Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.

    курсовая работа, добавлен 16.04.2015

  • Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.

    курсовая работа, добавлен 24.04.2011

  • Тройные интегралы от непрерывных и разрывных функций, их свойства, физический смысл, среднее значение. Тройной интеграл в цилиндрической и в сферической системе координат. Вычисление объёма, массы, центра тяжести тела с постоянной и переменной плотностью.

    курсовая работа, добавлен 30.07.2017

  • Понятие интеграла движения. Независимые интегралы движения для замкнутой системы. Асимптотическая аддитивность интегралов движения. Формулировка, доказательство теоремы Нётер. Некоторые замечания относительно теоремы Нётер. Сохранение аддитивной величины.

    контрольная работа, добавлен 19.11.2017

  • Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.

    лекция, добавлен 22.07.2015

  • Математическая модель и алгоритмическое описание процесса приближенного интегрирования. Применение составной квадратурной формулы трапеций для повышения эффективности вычислений при использовании подпрограммы. Тестирование стандартной подпрограммы.

    статья, добавлен 26.01.2019

  • Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.

    практическая работа, добавлен 02.06.2017

  • Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.

    курсовая работа, добавлен 04.03.2017

  • Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.

    курсовая работа, добавлен 20.10.2010

  • Использование метода прямоугольников, метода трапеций и метода парабол для вычисления определенных интегралов. Расчет и сравнение абсолютной и относительной ошибок приближенных методов. Формулы для вычисления относительной и абсолютной погрешностей.

    методичка, добавлен 27.08.2017

  • Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.

    презентация, добавлен 07.05.2020

  • Анализ теоретических основ об интеграле от разрывных функций. Изучение признаков сходимости несобственных интегралов. Метод Л.В. Канторовича выделения особенностей. Изучение особенностей решения интегралов от разрывных функций методом Л.В. Канторовича.

    курсовая работа, добавлен 28.04.2019

  • Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.

    контрольная работа, добавлен 18.12.2012

  • Исследование геометрических приложений двойных, тройных, криволинейных и поверхностных интегралов. Вычисление объема любого пространственного тела. Изучение площади области, ограниченной замкнутой кривой. Изучение массы и статических моментов пластины.

    практическая работа, добавлен 12.06.2021

  • Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.

    учебное пособие, добавлен 02.05.2014

  • Применение математических методов в деятельности среднего медицинского персонала. Линейность или нелинейность дифференциальных уравнений. Дифференциальные уравнения с разделяющимися переменными. Моделирование с применением дифференциальных уравнений.

    реферат, добавлен 19.01.2015

  • Особенности нахождения неопределённых интегралов различных типов. Типовой расчёт по теме "Интегральное исчисление функции одной переменной" с применением методов интегрирования. Решение примерного варианта уравнения с краткими методическими указаниями.

    методичка, добавлен 07.10.2015

  • Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.

    реферат, добавлен 21.03.2023

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Математический анализ как совокупность разделов математики, посвящённых исследованию функций и их обобщении методами дифференциального и интегрального исчисления. Использование математических методов в сфере управления, решение экономических задач.

    эссе, добавлен 24.08.2013

  • Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.

    курсовая работа, добавлен 26.12.2012

  • Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.

    курсовая работа, добавлен 11.04.2014

  • Изучение основных методов интегрирования простейших иррациональных функций. Определенный интеграл и его приложения. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Вычисление площади плоской фигуры, дуги, объемов тел вращения.

    методичка, добавлен 16.09.2017

  • Исследование и сравнительное описание наиболее распространенных приближенных методов вычисления определенных интегралов: прямоугольников, трапеций и парабол. Принципы замены подынтегральной функции многочленом, совпадающим с ней в некоторых точках.

    контрольная работа, добавлен 07.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.