Признак Даламбера. Степенные и функциональные ряды
Обоснование теорем Даламбера относительно знакочередующихся рядов, члены которых поочередно то неотрицательны, то отрицательны. Вычисление интервала и радиуса сходимости, которые вычисляют, воспользовавшись радикальным признаком Коши. Формула Стокса.
Подобные документы
Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Общее понятие последовательности. Основные свойства предела. Бесконечно малая последовательность и критерий Коши. Признак Вейерштрасса и подпоследовательности. Определение предела по Коши и Гейне. Бесконечно малые и бесконечно большие величины.
реферат, добавлен 23.12.2011Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.
курсовая работа, добавлен 15.12.2010Изучение правила замены переменной. Характеристика особенностей интегрирования по частям в определенном интеграле. Формулирование теорем. Нахождение первообразной подынтегральной функции и приращения первообразной. Вычисление определенного интеграла.
презентация, добавлен 18.09.2013Основные виды числовых рядов. Критерий абсолютной сходимости. Особенности разложения элементарной функции в ряд Фурье. Ряд Фурье непериодических функций с заданным периодом. Разложение в ряд Фурье по косинусам и синусам. Ряд Фурье на полупериоде.
реферат, добавлен 12.06.2015Вычисление определенных интегралов с помощью квадратурных формул. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа. Общая формула Симпсона, простейшие квадратурные формулы. Квадратурная формула Чебышева.
контрольная работа, добавлен 21.12.2010- 82. Интегралы и ряды
Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.
методичка, добавлен 06.08.2015 Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.
методичка, добавлен 27.05.2016Основные свойства системы дифференциальных уравнений (Навье-Стокса) в частных производных, описывающей движение вязкой ньютоновской жидкости. Уравнения Навье-Стокса в сферической системе координат. Скалярная форма записи системы уравнений Навье-Стокса.
презентация, добавлен 14.01.2018Способы построения вариационных рядов в статистическом анализе. Интервальный и дискретный вариационные ряды. Эмпирическая функция распределения. Доверительные интервалы для истинного значения измеряемой величины и среднего квадратического отклонения.
лабораторная работа, добавлен 30.03.2018Понятие статистических рядов распределения, их виды, расчет средних величин, моды и медианы. Графическое представление рядов, назначение структурных диаграмм. Расчет обобщающих показателей ряда распределения. Построение вариационного интервального ряда.
курсовая работа, добавлен 12.02.2011Преобразование задачи Коши в эквивалентное ей интегральное уравнение Вольтерра второго рода. Применение топологического метода – принципа сжатых отображений. Условия существования решений задачи Коши. Дифференциальные свойства решений начальной задачи.
статья, добавлен 11.11.2018- 88. Неравенства Коши
Коши Луи (1789-1857 гг.) - знаменитый французский математик. Изучение теории дифференциальных уравнений. Комплексные пространства со скалярным произведением. Определение предела математической последовательности. Множества в Евклидовом Пространстве.
реферат, добавлен 06.10.2017 Формула полной вероятности как следствие теорем о сложении и умножении вероятностей. Примеры применения формулы. Определение вероятности события А, которое может произойти только вместе с одним из событий образующих полную группу несовместных событий.
презентация, добавлен 01.11.2013Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.
курсовая работа, добавлен 23.04.2011Вычисление потока векторного поля через полную поверхность пирамиды в направлении нормали. Вычисление циркуляции векторного поля по замкнутому контуру путем применения теоремы Стокса к контуру и ограниченной им поверхности. Теорема Остроградского.
реферат, добавлен 22.12.2010Характеристическое вычисление кривой. Основной анализ общего интеграла дифференциального уравнения. Главная особенность решения с разделяющимися переменными в математике. Проведение и обоснование задачи Коши. Подбор решения равенств методом Лагранжа.
практическая работа, добавлен 04.12.2014Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
курсовая работа, добавлен 04.11.2012Доказательство алгебраичности значений радиальных производных для одного класса степенных рядов, являющихся результатом их произведения по Дирихле. Ряды Дирихле с периодическими алгебраическими коэффициентами, имеющими ограниченную сумматорную функцию.
статья, добавлен 31.05.2013Временные ряды и их исследования. Методы анализа временных рядов: метод Гусеница, основные направления его использования, сравнение его с другими методами (автоагрессия, разложение Фурье, Параметрическая регрессия). Описание метода, теоретические аспекты.
курсовая работа, добавлен 29.05.2014Теорема о вычетах является мощным инструментом для вычисления интеграла функции по замкнутому контуру. Рассмотрены определение вычета функции, основная теорема о вычетах, вычисление вычета относительно полюса, вычет функции относительно бесконечности.
реферат, добавлен 30.11.2023Скалярные и векторные поля. Циркуляция векторного поля вдоль кривой. Формула Гаусса-Остроградского, дивергенция. Формула Стокса, ротор векторного поля. Потенциальное поле и его свойства. Соленоидальное поле и его свойства. Расчет векторного потенциала.
курсовая работа, добавлен 24.03.2009Формула нахождения очень больших простых чисел. Алгоритмы разложение больших чисел на простые множители. Вычисление ряда чисел Фибоначчи. Числовой код треугольника Паскаля. Простые числа как основа защиты электронной коммерции и электронной почты.
статья, добавлен 03.03.2018Характеристика вспомогательной задачи метода фиктивных областей. Особенность рассмотрения уравнения Стокса. Сущность функции, удовлетворяющей интегральному тождеству. Рассмотрение обобщенного решения задания. Анализ получения основной оценки сходимости.
презентация, добавлен 30.03.2015Построение окружностей и касательных к ним. Формула Эйлера, инверсия и её свойства. Внутренние и внешние точки круга с границей. Треугольники, их отличия от подобия. Геометрия Мора-Маскерони, построения с помощью циркуля и линейки, их значение.
реферат, добавлен 12.04.2012