Признак Даламбера. Степенные и функциональные ряды
Обоснование теорем Даламбера относительно знакочередующихся рядов, члены которых поочередно то неотрицательны, то отрицательны. Вычисление интервала и радиуса сходимости, которые вычисляют, воспользовавшись радикальным признаком Коши. Формула Стокса.
Подобные документы
Обыкновенное дифференциальное уравнение как тождество, связывающее между собой значения независимой переменной, функции и её производных. Методика вычисления задачи Коши. Характеристика основных типов уравнений, которые допускают понижение порядка.
презентация, добавлен 05.02.2015Вычисление приближенных решений обыкновенного дифференциального уравнения 1 порядка. Вектор решения по методам Эйлера и Рунге-Кутты. Расчет погрешности приближенных решений. Построение графиков, демонстрирующих методы решений ОДУ второго порядка.
контрольная работа, добавлен 05.12.2013Исследование периодической краевой задачи для заданного уравнения. Определение функциональных банаховых пространств. Вычисление ограниченных проекторов на ядро и образ оператора. Расчет и обоснование изоморфизма. Доказательство представленных теорем.
статья, добавлен 26.04.2019Сущность понятия "несобственные интегралы". Формула Ньютона-Лейбница. Нарушение первого и второго условия. Сходящийся и расходящийся интеграл. Несобственный интеграл с бесконечными пределами. Интегралы от неограниченных функций, признак сравнения.
лекция, добавлен 29.09.2017Cистематизация и обобщение видов уравнений с параметрами и методы их решения. Случаи, когда исходное уравнение не является квадратным. Значения параметра a, для которых все корни уравнения отрицательны. Свойства логарифмов и методы замены переменной.
курсовая работа, добавлен 30.03.2015Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012Средние величины, неравенство Коши. Доказательство неравенств методами "от противного" и математической индукции. Использование неравенства Коши-Буняковского при решении тригонометрических уравнений. Решение уравнений с помощью замечательных неравенств.
курсовая работа, добавлен 23.10.2017Понятия и свойства функции. Исследование функции на четность и нечетность. Теория степенных рядов и рядов Фурье. Практический смысл утверждений о связи возрастания и убывания со знаком производной. Симметричность функций относительно осей координат.
контрольная работа, добавлен 12.03.2013Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
лекция, добавлен 26.09.2017Расчет сеточной задачи с использованием теорем Куранта (об областях зависимости) и Филлипова (о связи устойчивости, аппроксимации и сходимости). Создание программы на Паскале для решения смешанной задачи для уравнения гиперболического типа методом сеток.
курсовая работа, добавлен 04.02.2012- 111. Теорема Коши-Бине
Назначение матриц в системах линейных уравнений, операции над матрицами, правила их сложения матриц и умножения на скаляр, транспонирование произведения двух матриц. Понятие и свойства определителя квадратной матрицы, доказательство теоремы Коши-Бине.
курсовая работа, добавлен 11.01.2015 Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Изучение интегральных вычислений в курсе математического анализа. Определение риманового числа. Понятие непрерывной периодической функции. Анализ признаков сходимости ряда. Доказательство теорем о несобственном интеграле непрерывной периодической функции.
курсовая работа, добавлен 02.10.2021- 114. Формула Герона
Работы Герона как энциклопедия античной прикладной математики. Вычисление площади треугольника по его сторонам. Понятие героновых треугольников и пример простейшего такого треугольника. Формулы Герона для произвольного и равнобедренного треугольников.
презентация, добавлен 14.01.2016 Гармонические колебания (гармоники) и их характеристика. Основная система тригонометрических функций. Тригонометрический ряд Фурье, его особенности для четных и нечетных функций, достаточные условия сходимости. Ряд Фурье в комплексной форме, его интеграл.
презентация, добавлен 26.09.2017Исследование сходимости ряда членов бесконечной геометрической прогрессии. Гармонический ряд, доказательство расходимости. Теоремы о непрерывности суммы, почленном интегрировании и дифференцировании функциональных рядов. Криволинейный интеграл 1-го рода.
лекция, добавлен 19.01.2014Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.
контрольная работа, добавлен 04.01.2015Краткий экскурс в историю степенной функции. Степенные функции с целым и дробным показателем. Четные положительные показатели. Нечетные отрицательные показатели. Степенные функции с иррациональным показателем. Применение степенной функции человеком.
презентация, добавлен 17.05.2018Примеры вычислений поверхностного интеграла. Использование формул Остроградского-Гаусса и Стокса для вычисления площади поверхности и координат центра масс, моментов инерции материальных поверхностей с поверхностной плотностью распределения массы.
презентация, добавлен 29.03.2021Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
учебное пособие, добавлен 16.02.2014Применение различных вариационных рядов к выборкам сгруппированных и несгрупированных данных, для каждой из которых проводится свой анализ. Графическое отображение вариационных рядов. Коррелиционно-регрессивный анализ для выборки несгруппированных данных.
контрольная работа, добавлен 10.05.2019Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.
лекция, добавлен 18.05.2010Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.
курсовая работа, добавлен 09.06.2014Определение преимуществ векторного метода для доказательства некоторых теорем и решения задач по планиметрии. Доказательства теорем векторным методом. Доказательства основных соотношений, применяемых при решении задач. Разложения неколлинеарных векторов.
презентация, добавлен 10.04.2013Определение положения квадратичной функции с помощью разных теорем. Формулирование и доказательство прямой и обратной теорем Виета. Рассмотрение применения данных теорем к задачам с параметрами, сводящихся к исследованию корней квадратного трехчлена.
курсовая работа, добавлен 25.05.2018