Теорема Гауса-Маркова

Наилучшая линейная процедура получения оценок параметров уравнения и условия, при которых эта процедура дает несмещенные и эффективные оценки, сформулированная в теореме Гаусса-Маркова. Вычисление дисперсии (ковариационной матрицы) параметров модели.

Подобные документы

  • Вивчення стійкості неоднорідного процесу, який отримано шляхом малого збурення однорідного процесу. Дослідження стійкості ланцюгів Маркова, що задаються близькими перехідними ймовірностями, в однорідному та неоднорідному випадках і нерівномірних нормах.

    автореферат, добавлен 30.07.2015

  • Вычисление задач несовмещенных оценок среднего значения. Поиск доверительного инетрвала для среднего значения дисперсии из стандартного отклонения. Вычисление несмещенных оценок. Решение задачь путем вычисления минимальной выборки.

    задача, добавлен 23.10.2008

  • Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.

    лекция, добавлен 28.07.2015

  • Алгоритмы идентификации для обеспечения качества управления системой. Линейная дискретная динамическая система с использованием мерного вектора шума объекта с нулевым математическим ожиданием и ковариационной матрицей. Проявление численной неустойчивости.

    статья, добавлен 13.06.2015

  • Алгоритм моделирования расширенных цепей Маркова полиномиальными функциями над полем GF(2n). Статистический анализ цепей Маркова по критерию линейной сложности последовательностей. Разработка метода представления неразложимых стохастических матриц.

    автореферат, добавлен 28.03.2018

  • Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.

    реферат, добавлен 05.06.2012

  • Решение систем линейных уравнений методом Гаусса, Крамера и обратной матрицы. Геометрия на плоскости и в пространстве, каноническое уравнение прямой. Раскрытие неопределенностей и вычисление пределов. Производные и дифференцирования сложной функции.

    контрольная работа, добавлен 22.01.2013

  • Расчет ежедневного объема выпуска каждого вида продукции матричным методом и методом Гаусса. Вычисление определителя матрицы и ее обратного типа. Определение коэффициентов прямых затрат, построение вектора валового выпуска конечного продукта отрасли.

    контрольная работа, добавлен 26.11.2014

  • Рассмотрение центральной предельной теоремы. Характеристика неравенства Чебышева, изучение его доказательства. Определение особенностей закона больших чисел в форме Чебышева. Выявление значения теоремы Бернулли, Пуассона. Формулировка неравенства Маркова.

    реферат, добавлен 12.11.2015

  • Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.

    контрольная работа, добавлен 11.12.2012

  • Решение линейного алгебраического уравнения методом Гаусса, Крамера и матричным способом. Получение из исходной матрицы путем замены ее элементов алгебраическими дополнениями. Определение матрицы квадратной системы по формуле Крамера и решение уравнения.

    задача, добавлен 05.09.2016

  • Исследование устойчивости модели нейтрофиломоноцитопоэза. Вычисление системы уравнений, описывающих созревание клеток при помощи критерия Рауса-Гурвица. Определение пороговых значений параметров модели, при которых система становится неустойчивой.

    статья, добавлен 15.05.2017

  • Изучение метода последовательного исключения переменных. Элементарные преобразования строк расширенной матрицы. Доказательство теоремы Крамера. Нахождение обратной матрицы методом Гаусса. Определение числовых значений главных неизвестных через свободные.

    лекция, добавлен 29.09.2013

  • Доказательство теоремы Виета, в том числе ее применение для приведенного и неприведенного квадратного уравнения. Практические задачи и ситуации, в которых может использоваться теорема, а также краткая биография французского математика Франсуа Виета.

    презентация, добавлен 18.04.2011

  • Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.

    учебное пособие, добавлен 24.10.2012

  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций, добавлен 29.09.2014

  • Признаки и переменные, используемые при математической обработке психологических данных. Классификация шкал измерения социальных объектов С. Стивенса. Построение графика нормального распределения признаков Гаусса. Оценка параметров дисперсии асимметрии.

    презентация, добавлен 09.04.2015

  • Рассмотрение особенностей численного метода оценки параметров нелинейной математической модели, описывающей изменения численности населения Российской Федерации. Определение начального приближения вектора оценок коэффициентов разностного уравнения.

    статья, добавлен 28.01.2021

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

  • Рассмотрение вопросов реализации авторегрессионных моделей для векторных временных рядов. Способ получения оценок параметров модели путем решения соответствующей вариационной задачи. Дифференцирование произвольной функции по векторным аргументам.

    статья, добавлен 23.06.2018

  • Условие критичности частного уравнения или неравенства. Поиск множества всех критических точек уравнения. Определение граничных значений параметров в произвольном пространстве на плоскости. Понятие открытого множества. Графическое решение неравенств.

    лекция, добавлен 01.09.2017

  • Базовые действия над матрицами: сложение, вычитание, умножение на число, умножение матрицы на матрицу, также операция деления на матрицу. Теорема невырожденной квадратной матрицы. Понятие обратной матрицы и решение уравнения. Базисный минор и ранг.

    реферат, добавлен 07.04.2015

  • Особенности методики построения корреляционной таблицы, вычисление с ее помощью параметров уравнения. Определение параболической регрессии по формуле Крамера. Оценка надежности корреляционного отношения, вариация факторного и результативного признака.

    курсовая работа, добавлен 14.04.2015

  • Классификация случайных процессов. Основные понятия Марковских случайных процессов. Математический аппарат дискретных Марковских цепей. Понятие однородной цепи Маркова. Переходные вероятности и матрица перехода. Теорема о предельных вероятностях.

    курсовая работа, добавлен 10.04.2012

  • Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.

    контрольная работа, добавлен 09.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.