Системы распознавания образов (идентификации)

Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.

Подобные документы

  • Изучение алгоритмов машинного обучения, направленных на выявление закономерностей в графических данных. Применение сверточных нейронных сетей при работе со спутниковыми изображениями. Создание интерактивной карты для визуализации распознанных объектов.

    дипломная работа, добавлен 02.09.2018

  • Актуальные проблемы выделения изображений движущихся объектов на зашумленном фоне, фильтрации помех, оценки скорости объекта, его идентификации и сопровождения. Особенности систем обработки видеоизображений, построенные с применением нейросетевых методов.

    статья, добавлен 02.02.2019

  • Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей. Возможности и перспективы развития подобных систем на современном этапе.

    статья, добавлен 28.03.2022

  • Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей; возможности и перспективы развития подобных систем на современном этапе.

    статья, добавлен 10.04.2023

  • Рассмотрение методов прогнозирования нейронных сетей. Решение задачи обзора методов оконного прогнозирования на объеме страховых взносов. Изучение методов одношагового, многошагового прогнозирования. Применение метода окон для генерации обучающей выборки.

    статья, добавлен 24.03.2018

  • Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.

    статья, добавлен 17.03.2021

  • Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.

    контрольная работа, добавлен 18.06.2024

  • Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.

    контрольная работа, добавлен 06.12.2015

  • Применение искусственного интеллекта в деятельности человека. Разработка алгоритма защиты систем компьютерного зрения. Виды вредоносных атак. Использование гауссовского зашумления в нейронных сетях для обеспечения безопасности распознавания образов.

    статья, добавлен 09.05.2022

  • Проблема создания искусственного интеллекта. Имитационные теории моделирования. Развитие нейронных сетей. Разработка семантических алгоритмов. Технологии самообучающихся нейронных сетей. Социально-этические аспекты создания искусственного интеллекта.

    реферат, добавлен 28.06.2011

  • Исследование особенностей применения эволюционных алгоритмов для настройки структуры и поиска весов связей искусственных нейронных сетей. Анализ вопросов эволюционного поиска топологии искусственной нейронной сети. Кодирование информации о весах связей.

    статья, добавлен 08.02.2013

  • Разработка облика системы технического зрения для мобильных систем и программного обеспечения системы технического зрения. Исследование применения алгоритмов на основе глубоких нейронных сетей в задаче детектирования объектов дорожного движения.

    дипломная работа, добавлен 08.06.2018

  • Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.

    дипломная работа, добавлен 28.08.2020

  • Общая структура топологии применения генетических алгоритмов для обучения нейронных сетей. Методы и алгоритмы предварительной подготовки данных, расчета структуры нейросети и модифицированных методов обучения, проверки работы на валидационной выборке.

    статья, добавлен 12.05.2017

  • Понятие и принцип работы нейронных сетей. Типы нейронов и их функциональные особенности: биологические и искусственные. Базовые архитектуры нейронных сетей, их структура и элементы. Этапы программирования средств аппаратной поддержки нейровычислений.

    контрольная работа, добавлен 14.10.2013

  • Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.

    курсовая работа, добавлен 16.05.2016

  • Определение общего количества собственных векторов, используемых при распознавании образов. Необходимость обучения системы сформировать порог идентификации. Возможности по настройке системы для обеспечения необходимого качества распознавания образов.

    статья, добавлен 19.06.2018

  • Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.

    реферат, добавлен 15.03.2009

  • Понятие машинного зрения и распознавания образов, существующие разработки в области распознавания жестов глухонемых, основные требования и ограничения. Методы и этапы распознавания образов применительно к задаче распознавания языка жестов.

    дипломная работа, добавлен 21.09.2018

  • Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.

    дипломная работа, добавлен 07.08.2018

  • Понимание изображения документа, порядок анализа проекционных профилей и преобразование Хафа. Процесс оптического распознавания символов и применение нейронных сетей. Классификация перцептронов, обучение и ограничение. Процесс работы сети Хопфилда.

    дипломная работа, добавлен 14.05.2013

  • Определение понятия и характеристика архитектуры нейросети. Теория искусственного интеллекта Мак-Каллока и Питса. Изучение основ нейроматематики. Перцептрон и сеть Хопфилда. Самоорганизующаяся карта Коохонена. Пример кластеризации в выходном слое.

    презентация, добавлен 14.12.2017

  • Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.

    реферат, добавлен 09.06.2016

  • Система шифрования на основе искусственных нейронных сетей типа GRNN. Нейронная сеть как подходящий выбор для функциональных форм, используемых для операций шифрования и дешифрования. Построение системы с использованием постоянно изменяющегося ключа.

    статья, добавлен 30.04.2018

  • Характеристика мультиагентных систем на примере конкретной робототехнической системы. Анализ основных логических вычислений рассмотренной мультиагентной системы, которые выполняются при помощи нейронных сетей. Изучение задачи исследования местности.

    статья, добавлен 29.07.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.