Системы распознавания образов (идентификации)
Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.
Подобные документы
Искусственный интеллект и нейронные сети. Особенности использования искусственных нейронных сетей в системах управления. Системы адаптивного управления, использующие эталонную модель Ляпунова. Архитектура построения нейросетевых систем управления.
отчет по практике, добавлен 09.02.2019Понятие "распознавание образов". Особенности разработки математической модели распознавания образов в кибернетике. Общая характеристика задач распознавания образов и их основные типы. Методы и принципы, применяемые в этой сфере вычислительной техники.
контрольная работа, добавлен 30.07.2018Разработка и анализ метода инициализации параметров вейвлет-нейронных сетей на основе значений центральных частот базисных вейвлет-функций. Исследование эффективности, преимуществ и недостатков данного метода. Алгоритм формирования библиотеки вейвлетов.
статья, добавлен 07.08.2013Задача целенаправленной предобработки обучающей выборки для ускорения обучения нейросети. Значение константы Липшица выборки, как индикатор сложности выборки. Показатели зависимости свойств обученных нейронных сетей от величины константы Липшица выборки.
статья, добавлен 08.02.2013Сеть Хопфилда: понятие, слои, граница емкости памяти, структурная схема. Пороговая передаточная функция. Обучение сети Хемминга, алгоритм функционирования. Весовые коэффициенты тормозящих синапсов. Определение состояния нейронов второго слоя сети.
статья, добавлен 17.07.2013Основополагающие определения исследуемой области. Современное состояние теории распознавания образов и методы, используемые в данном процессе. Выбор метода распознавания для получения значений показателей со снимка кристаллографии ротовой жидкости.
статья, добавлен 01.09.2018Понятие распознавания: история развития, классификация основных методов распознавания образов (РО). Общая характеристика задач РО и их основные типы. Главные проблемы и перспективы развития распознавания образов: особенности применения РО на практике.
реферат, добавлен 26.04.2016Осцилляторные нейросетевые модели сегментации изображений и зрительного внимания. Типы нейронных сетей. Быстрые нейронные сети: проектирование, настройка, приложения. Нейроноподобные модели описания динамических процессов преобразования информации.
курс лекций, добавлен 08.02.2013Эволюция поколений символообрабатывающих ЭВМ. Этапы развитие искусственных нейронных сетей. Сравнение машины фон Неймана с биологической нейронной системой. Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей.
лекция, добавлен 06.09.2017Методики компонентного проектирования нейронных сетей для обработки баз знаний, представленных семантическими сетями. Использование унифицированной модели нейронной сети и компонентном подходе к работе с нейронными сетями; библиотека НС-компонент.
статья, добавлен 06.03.2019Методики и подходы построения систем искусственного интеллекта. Применение в задачах распознавания образов нейронных сетей. Имитационный подход для построения систем искусственного интеллекта, перспективы воплощения в информационные массивы и программы.
курсовая работа, добавлен 29.03.2016Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.
статья, добавлен 21.05.2021Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.
курсовая работа, добавлен 22.06.2011Разработка интеллектуальных систем, основанных на знаниях нейросетевых и нейрокомпьютерных технологий. Использование нейронных сетей при решении предоставления кредита в современном банке. Создание экспертных систем и организация ассоциативной памяти.
контрольная работа, добавлен 29.11.2015Изучение принципа работы сверточных нейронных сетей. Исследование современных методов определения направления взгляда. Выбор технологий и библиотек необходимых для разработки приложения. Разработка веб-приложения. Основные типы слоев и методы оптимизации.
дипломная работа, добавлен 27.08.2020- 116. Нейронные сети
Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.
реферат, добавлен 15.03.2009 Разработка искусственных нейронных сетей и машинное обучение как перспективные направления информационных технологий. Преимущества и недостатки, способность нейросетей решать задачи, которые невозможно решить классическими программными алгоритмами.
статья, добавлен 20.02.2019Автоматизация проектирования локальных сетей Ethernet и ATM при построении вычислительных сетей, предназначенных для передачи разнородного трафика. Синтез структур Ethernet и ATM с помощью генетических алгоритмов нейронных сетей. Типы коммутации пакетов.
статья, добавлен 06.05.2018Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Описание основ построения нейронных сетей, включая сверточные нейросети. Рассматривается способ реализации механизма распознавания английских рукописных символов и цифр на основе полносвязной и свёрточной нейросетей с использованием фреймворка PyTorch.
статья, добавлен 06.09.2021Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.
дипломная работа, добавлен 28.11.2019- 123. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Изучение истории возникновения и развития социальных сетей. Анализ преимуществ сетевых сервисов для повышения продуктивности работы, изучение их недостатков. Описание мировых социальных сетей. Анализ влияния социальных сетей на детей и подростков.
реферат, добавлен 03.04.2018Рассмотрение вопросов, связанных с решением задачи построения и обработки когнитивных структур на основе использования нейронных сетей. Организация специализированной модели, настроенной на решения поставленной задачи "Нейросетевая когнитивная модель".
статья, добавлен 23.08.2020