Актуальность золотого сечения в современном мире

История Божественной гармонии. Первое упоминание деления отрезка в крайнем и среднем отношении. Применение закона гармонического деления в математике. Способ построения пентаграммы. Использование закономерности и связи золотого сечения и числа Фибоначчи.

Подобные документы

  • Метод гиперплоскостей для построения выпуклой области. Решение нелинейных уравнений на основе минимизации функций многих переменных. Сокращение интервала неопределенности методами золотого сечения, квадратичной аппроксимации и Давидона-Флетчера-Пауэлла.

    реферат, добавлен 14.02.2011

  • Биография Леонардо Пизано Фибоначчи. Возникновение "задачи о размножении кроликов" - числовой последовательности названной впоследствии "рядом Фибоначчи". Анализ золотосечённой логарифмической последовательности. Применение чисел Фибоначчи в наше время.

    доклад, добавлен 25.02.2014

  • Понятие золотого сечения, порядок его расчета и предъявляемые требования. Исследование данного явления древними учеными и мыслителями, его взаимоотношение с гармонией. Золотые пропорции в строении молекулы ДНК, использование их в искусстве и физике.

    реферат, добавлен 03.11.2013

  • Расстояние между точками. Середина отрезка, центр тяжести многоугольника. Задача деления заданного отрезка в любом заданном отношении. Расстояния между точками на окружности. Скалярное произведение векторов. Длина векторного произведения векторов.

    контрольная работа, добавлен 05.12.2018

  • Фибоначчи и его числовая последовательность. Оценка реакции человека на правильные геометрические формы в окружающей природе и в объектах искусства. Торговля на рынке форекс. Расчет уровня отката и отскока тренда. Изучение волновой теории Элиота.

    реферат, добавлен 05.06.2014

  • История возникновения математики. Концептуализация числа и изобретение основных действий: сложения, вычитания, умножения и деления. Создание счётных устройств. Развитие высокотехнологичной, образованной и обеспеченной цивилизации благодаря математике.

    реферат, добавлен 09.02.2016

  • Пропорциональное деление отрезка на неравные части. Золотое сечение в математике, анатомии человеческого тела, скульптуре, архитектуре, живописи, природе, поэзии и музыке. Форма золотого прямоугольника. Геометрическое изображение золотой пропорции.

    презентация, добавлен 16.05.2013

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

  • Статические моменты сечения. Методы определения центробежного момента инерции части сечения, расположенной по одну сторону от оси, который будет равен моменту части, расположенной по другую сторону, но противоположен ему по знаку. Моменты инерции сечения.

    реферат, добавлен 08.12.2011

  • Определение и анализ положения главных центральных осей инерции составного сечения. Вычисление и характеристика главных центральных моментов инерции сечения. Изучение координат центров тяжести профилей и координат центра тяжести сечения на чертеже.

    практическая работа, добавлен 20.03.2024

  • Краткие биографические сведения о крупнейшем математике средневековой Европы - Леонардо Фибоначчи. Его вклад в науку, основные труды и математические трактаты как фундамент для дальнейшего развития математических знаний. Примеры решения задач Фибоначчи.

    реферат, добавлен 16.11.2015

  • Принято считать, что понятие о золотом сечении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого сечения позаимствовал у египтян и вавилонян. Золотая пропорция.

    реферат, добавлен 20.04.2011

  • Аппроксимации функций, численное дифференцирование и интегрирование. Оценка погрешности квадратурных формул Ньютона-Котеса. Поиск минимума, случай одной переменной. Метод золотого сечения. Интерполяционный многочлен Ньютона для равноотстоящих узлов.

    курс лекций, добавлен 03.07.2013

  • Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.

    лабораторная работа, добавлен 06.10.2022

  • Определение унимодальности функции. Точные и приближенные методы поиска экстремума. Метод перебора, по разрядного поиска, дихотомии, золотого сечения, средней точки, хорд и метод Ньютона. Сравнение методов оптимизации по скорости вычисления и точности.

    курсовая работа, добавлен 21.12.2015

  • Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.

    разработка урока, добавлен 20.12.2010

  • Построение правильных пирамид и призм. Характеристика сечения прямоугольной трубы. Пересечение пирамиды линией и призмой. Последовательность построения 2-х многогранников. Построение сечения и развертки цилиндра, конуса и его развертки, шара и тора.

    лекция, добавлен 26.09.2017

  • Постановка задачи и основные этапы отыскания решения. Погрешности и критерии окончания метода деления отрезка пополам при решении нелинейного уравнения. Применение метода Ньютона, простых итераций, секущих и ложного положения при вычислительном процессе.

    контрольная работа, добавлен 28.03.2015

  • Составление уравнения и определение его корней. Натуральные решения уравнения, доказательство гипотезы Била. Представление натурального числа по формуле остатков от деления целого числа на данное натуральное. Использование формулы для суммы кубов.

    статья, добавлен 03.03.2018

  • Размеры простых составляющих сложного сечения в зависимости от размеров стандартного профиля (швеллера). Определение главные центральные моменты инерции. Расчет радиусы инерции и сопротивления составного сечения относительно главных центральных осей.

    задача, добавлен 04.04.2022

  • Рассмотрение связи с различными аспектами жизнедеятельности человека понятия "золотое сечение". Эстетика как отдельная наука, изучающая сущность красоты. Методы расчета биноминальных элементов. Числовые закономерности, последовательность Фибоначчи.

    статья, добавлен 02.03.2019

  • Понятие рекуррентной нерекуррентной формул. Некоторые свойства чисел последовательности Фибоначчи. Система счисления, основанная на числах Фибоначчи. Схема прибавления, принцип перехода к следующей последовательности. Числа Каталана, элементы массива.

    презентация, добавлен 26.09.2017

  • Написание Трактата по арифметике ("Liber abaci") европейским математиком эпохи Средневековья Л. Фибоначчи. Содержание книги: признаки делимости, дроби и смешанные числа, свойства пропорции и др. Наиболее интересные арифметические задачи из Трактата.

    статья, добавлен 30.09.2015

  • Аксиомы стереометрии, их сущность и содержание. Построение сечения тетраэдра и сечения через точки. Основные понятия и теоремы стереометрии. Построение сечения тетраэдра плоскостью, проходящей через возможные точки. Примеры задач для контрольной работы.

    презентация, добавлен 13.04.2012

  • Краткая характеристика, алгоритм, описание программы решения и результаты работы численных методов для задачи решения нелинейных уравнений: золотого сечения, дихотомии, простых итераций. Сравнение и анализ, преимущества и недостатки работы методов.

    контрольная работа, добавлен 09.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.