Обзор алгоритмов машинного обучения для обработки запросов в helpdesk
Данная научная статья представляет собой комплексное исследование современных методов применения машинного обучения в области обслуживания клиентов и поддержки пользователей через helpdesk. Рассматриваются разнообразные алгоритмы машинного обучения.
Подобные документы
Исследование методов классификации, включая k ближайших соседей, метод опорных векторов, метод Байеса и нейронные сети. Рассмотрена эффективность применение каждого из методов в работе helpdesk подразделения. Каждый метод обладает особенными параметрами.
статья, добавлен 08.12.2024Основные понятия и существующие алгоритмы машинного обучения, особенности их применения в информационных системах. Подходы к обработке естественного языка. Вызовы и ограничения применения машинного обучения в информационных системах, его перспективы.
курсовая работа, добавлен 20.05.2023DoS-атаки представляют собой серьезную угрозу для онлайн-сервисов, сетей и бизнеса, способствуя значительным сбоям в работе, финансовым потерям и ущербу. Рассматриваются методы машинного и глубокого обучения для обнаружения и предотвращения D DoS-атак.
статья, добавлен 17.12.2024Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020Разработка методики оценки действий оператора эргатической системы "Летчик–Самолет" на этапе посадки. Описание методов машинного обучения с учителем: метода опорных векторов и градиентного бустинга деревьев. Тестирование алгоритмов машинного обучения.
статья, добавлен 28.11.2016Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Данная научная работа подтверждает, что с помощью усовершенствованных методов обработки текста и машинного обучения можно значительно повысить эффективность систем по борьбе с дезинформацией. Использование алгоритмов RandomForest и SGDClassifier.
статья, добавлен 02.01.2025Общая характеристика статьи, описывающей алгоритм рекомендации перемещения метода с помощью машинного обучения. Рассмотрение основных особенностей применения методов машинного обучения для автоматической рекомендации рефакторинга "перемещение метода".
дипломная работа, добавлен 01.12.2019Изучение современных алгоритмов обнаружения и распознавания лиц на изображении для разработки приложения микро-сервиса для распознавания личности на основе фотографии лица с использованием алгоритмов машинного обучения. Описание процесса разработки.
дипломная работа, добавлен 04.12.2019Рассматриваются наиболее актуальные патентные решения в области интеграции машинного обучения в банковские системы противодействия мошенничеству (антифрод-системы). Приведены патентные решения российских, американских, китайских учёных и разработчиков.
статья, добавлен 01.04.2022Возможности применения технологии блокчейн для повышения эффективности работы методов машинного обучения. Тенденции практического применения нейронных сетей и технологии блокчейн. Формирование обучающих выборок, сбор данных распределенными системами.
статья, добавлен 10.05.2022Возможность применения машинного обучения при классификации спама. Структура файла "spam". Программный код использования библиотеки pandas, перевода категориальных признаков в числовые. Код тестирования различного количества нейронов, его анализ.
статья, добавлен 17.02.2019Основы машинного обучения на компьютерных программах и алгоритмах, которые самостоятельно обучаются адаптироваться и расти при подаче новых данных. Вкладывание в отдельную программу/компьютер алгоритмов поиска решений, использующих данные статистики.
статья, добавлен 23.02.2025Проблема выбора оптимального метода подбора персонифицированного лечения пациента. Исследование метода взвешенных исходов для анализа выживаемости на выборке пациентов с детским лимфобластным лейкозом. Применение данных для машинного обучения нейросети.
дипломная работа, добавлен 27.08.2016Решение задачи классификации переводов клиентов банка на легальные и мошеннические с использованием средств машинного обучения. Обнаружение мошеннических транзакций средствами машинного обучения. Решение задачи построения ансамбля классификаторов.
дипломная работа, добавлен 18.07.2020Появление и перспективы использования технологии нейронной стилизации. Типологизация методов машинного обучения для стилизации изображений. Рассмотрение реализации стилизации изображений с помощью машинного и глубокого обучений на языке Python.
статья, добавлен 09.12.2024Разработка и анализ работы алгоритмов для анализа тональности агрессивных комментариев, автоматического определения их эмоционального окраса. Реализация классифицирующих моделей машинного обучения, оценка их качества и сравнение их эффективности.
дипломная работа, добавлен 10.12.2019Применение СУБД для обработки большого объема данных в современных проектах машинного обучения и анализа данных. Анализ огромных объемов информации, используемых в данных приложениях. Обеспечение эффективной интеграции с приложениями и ресурсами данных.
статья, добавлен 14.12.2024Сбор и агрегация исторических данных о регулярных рейсах авиакомпаний. Особенность создания модели машинного обучения для предсказания вероятности отмены маршрута. Характеристика формирования ИТ-сервиса для предоставления доступа к предиктивной модели.
дипломная работа, добавлен 09.08.2018Ускорение обработки огромных информационных массивов как одна из основных целей методики обнаружения вредоносного трафика с использованием анализа данных. Особенности настройки гиперпараметров алгоритма, который реализует метод машинного обучения.
статья, добавлен 18.01.2021Описание анализа систем распознавания эмоций с применением методов машинного обучения, находящихся в открытом доступе, в рамках курсового проекта по дисциплине Обучающие Технические Системы "Machine Learning". Neurobotics EmoDetect. Cognitive Emotion.
статья, добавлен 14.03.2019Исследование задачи машинного обучения. Распознавание на изображении образа кошки. Пример распознавания лиц на Facebook. Пример простейшей схемы нейросети. Пример отображения некоторых архитектур нейросетей. Анализ программ-поисковиков в Интернете.
статья, добавлен 13.03.2019Обзор и классификация существующих систем машинного перевода. Состав логических блоков систем, история развития машинного перевода. Рассмотрение места системы машинного перевода "Кросслятор 2.0" среди современных систем автоматической обработки текстов.
статья, добавлен 28.10.2018Знакомство с основными проблемами автоматизированного формирования сценариев, описывающих поведение вредоносных программ. Рассмотрение особенностей и способов применения методов машинного обучения для формирования сценариев поведения вредоносных программ.
статья, добавлен 28.08.2016Рассмотрение машинного обучения для классификации комментариев в рамках курсового проекта по дисциплине "Machine Learning. Обучающиеся технические системы". Автоматическое определение эмоциональной окраски (позитивный, негативный) текстовых данных.
статья, добавлен 19.02.2019