Нейронные сети - алгоритм обратного распространения
Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.
Подобные документы
Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.
статья, добавлен 15.08.2020Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.
курсовая работа, добавлен 21.02.2016Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Фрагмент нейросети (входной и выходной слои). Простейшая линейная функция от двух входов. Трактовка работы сети для имитации прохождения по ней возбуждения, управления. Теорема о сходимости перцептрона. Метод обратного программного распространения ошибки.
презентация, добавлен 16.11.2014Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.
книга, добавлен 18.01.2011Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.
презентация, добавлен 16.10.2013Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Решение по методу наименьших квадратов. Производные целевой функции по весам нейронов выходного слоя. Нахождение минимума методом наискорейшего спуска. Случайные весовые коэффициенты. Сеть прямого распространения со случайными весовыми коэффициентами.
реферат, добавлен 17.07.2013Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.
курсовая работа, добавлен 04.12.2012Проблема преобразования данных без использования конкретной формулы. Нейронные сети - системы искусственного интеллекта. Способность системы самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.
статья, добавлен 15.02.2019Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009Особенности реализации алгоритма обучения, временно прекращающего адаптацию наиболее значимых синапсов при обучении нейросети обратного распространения. Показатели обобщающей способности и большей устойчивости полученных нейросетей к отказам элементов.
статья, добавлен 08.02.2013Описание задачи и практические приложения задачи распознавания образов. Проблема разделения классов (проблема "исключающего ИЛИ"). Определение отношения XOR как известный пример нелинейной проблемы. Обучение по алгоритму обратного распространения ошибки.
лекция, добавлен 09.10.2013Модель формального кибернетического нейрона. Характеристика многослойного персептрона. Его обучение методом обратного распространения ошибки. Рекурсивные сети Элмана, способные обрабатывать последовательности векторов. Области применения нейросетей.
статья, добавлен 14.12.2017- 17. Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
статья, добавлен 19.06.2018 - 18. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Задача определения оптимальной структуры нейросети. Зависимости величин ошибок обучения и обобщения (процент неправильно решенных примеров в соответствующей выборке) и индикаторов внутренних свойств нейросетей от числа нейронов в скрытом слое сети.
статья, добавлен 08.02.2013Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.
статья, добавлен 17.03.2021Сравнительный анализ алгоритмов обучения нейро-нечеткой системы с функциями принадлежности с применением метода обратного распространения ошибки и гибридного метода. Решение задачи управления биотехнологическими процессами микробиологических производств.
статья, добавлен 26.05.2017Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.
книга, добавлен 18.01.2011Практические приложения распознавания образов. Выработка правил классификации самолетов для бомбардировщиков и истребителей в зависимости от их максимальной скорости и максимального взлетного веса. Обучение по алгоритму обратного распространения ошибки.
контрольная работа, добавлен 28.08.2013Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.
дипломная работа, добавлен 07.08.2018