Об ошибках использования символов языка теории множеств в записи предложений геометрического содержания
Типичные ошибки, допускаемые в символической записи на языке теории множеств предложений геометрического содержания. Примеры заданий, направленных на формирование умения корректно использовать символы языка теории множеств при записи предложений.
Подобные документы
История возникновения аксиоматического метода в математике и в гуманитарных науках. Решение учебно-исследовательских задач в университете с использованием систем компьютерной математики. Применение теории нечетких множеств в гуманитарных исследованиях.
статья, добавлен 17.07.2018- 77. Алгебра событий
Введения понятия алгебры множеств. Необходимость объединять счетные наборы событий в теории вероятностей. Замкнутость множества относительно счетного числа любых других операций над событиями. Составление функций распределения на основе их рядов.
контрольная работа, добавлен 09.01.2015 Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
курс лекций, добавлен 06.08.2017Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.
методичка, добавлен 24.09.2019Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.
реферат, добавлен 16.01.2018Описание упорядоченных структур в теории множеств с самопринадлежностью. Счетность количества обозначений. Несчетность множества точек на прямой и счетность количества n обозначений чисел на отрезке. Классические утверждения теоремы Гёделя о нечетности.
статья, добавлен 26.04.2019Этапы развития математических знаний. Формирование понятия геометрической фигуры. Индийская нумерация (способ записи чисел). Достижения средневековых индийских математиков. Идеи и теории представителей пифагорейской школы. Вавилонская расчётная техника.
презентация, добавлен 30.03.2013Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.
учебное пособие, добавлен 08.02.2015Особенности контроллеров нечеткой логики как важного применения теории нечетких множеств. Общая структура нечеткого микроконтроллера. Описание лингвистической переменной и функции принадлежности. Принципы работы мобильного робота с нечеткой логикой.
реферат, добавлен 17.07.2013Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.
контрольная работа, добавлен 13.05.2014Понятие, элементы и виды множества. Круги Эйлера. Разбиение на части. Декартово произведение множеств. Число элементов в объединении и разности конечных множеств. Способы решения текстовой задачи. Аксиоматическое построение системы натуральных чисел.
курс лекций, добавлен 26.11.2016Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.
статья, добавлен 11.02.2021Главные понятия алгебры множеств. Определение принципа двойственности и соответствия уравнений. Виды графов. Алгоритм поиска максимального потока в сети. Функции логарифмических частотных систем. Построение матричных уравнений и дискретных систем.
курс лекций, добавлен 06.12.2015Вещественное число порядка как класс эквивалентности, если между элементами этих множеств можно установить взаимно однозначное соответствие. Построение вещественных чисел исходя из рациональных чисел согласно теории немецкого ученого Георга Кантора.
статья, добавлен 29.03.2019Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.
контрольная работа, добавлен 19.06.2011Значение и применение теории бесконечного множества простых чисел. Основы установления сравнительной количественной оценки множеств. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов, численными методами.
статья, добавлен 26.01.2019- 93. Римские цифры
Ознакомление с историей развития римской (буквенной) системы нумерации. Рассмотрение правил записи чисел римскими цифрами. Исследование и характеристика особенностей применения римских цифр. Изучение процесса записи арабских чисел с помощью римских.
презентация, добавлен 08.11.2015 Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
контрольная работа, добавлен 25.12.2011Разработана математическая модель здания на основании теории множеств. Определены параметры дефектов для каждого конструктивного элемента и их соответствующие предельно-допустимые значения, проведен анализ технического состояния конструктивного элемента.
статья, добавлен 20.11.2020Особенности и закономерности применения теории вероятностей в различных сферах общественной жизни. Этапы ее развития и специфика использования в профессиональной деятельности. Конкретные примеры применения данной теории в экономике и менеджменте.
статья, добавлен 20.01.2022Логические связи и отношения, лежащие в основе логического вывода, с использованием языка математики. Объединение множеств. Аксиома Дедекинда. Понятие супремума. Обратная функция. Геометрическая интерпретация. Монотонная последовательность чисел.
контрольная работа, добавлен 12.10.2013Описание аналога теоремы Какутани о неподвижных точках многозначного отображения в теории множеств с самопринадлежностью. Суть рекомбинации товаров при производстве новых товаров. Совпадение видов неподвижных точек с действительной структурой экономики.
статья, добавлен 26.04.2019Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.
лекция, добавлен 29.09.2014Анализ перспектив и "точек роста" современной теоретической и вычислительной математики. Теория нечетких множеств. Развитие идеи системного обобщения математики в области теории информации. Реализация идей системного интервального обобщения математики.
статья, добавлен 29.04.2017