Об ошибках использования символов языка теории множеств в записи предложений геометрического содержания

Типичные ошибки, допускаемые в символической записи на языке теории множеств предложений геометрического содержания. Примеры заданий, направленных на формирование умения корректно использовать символы языка теории множеств при записи предложений.

Подобные документы

  • Основы классической теории сводимости задач и геометрического подхода к изучению их сложности. Понятие конусного и многогранного разбиения, афинной сводимости задач комбинаторной оптимизации. Примеры труднорешаемых и полиномиально разрешимых задач.

    диссертация, добавлен 10.01.2012

  • Общая математическая модель функционирования системы физической защиты объектов на основе теории множеств. Использование композиции соответствий и метода анализа иерархий. Описание нечетких соответствий. Анализ композиции нечетких гиперграфов модели.

    статья, добавлен 11.01.2020

  • История происхождения египетских дробей в математике. Применение форм записи, основанных на иероглифе глаз Гора. Исследование разложений с помощью алгоритма Фибоначчи. Характеристика современной теории чисел. Особенность изучения гипотезы Эрдеша-Страуса.

    доклад, добавлен 30.11.2015

  • Анализ выработки наиболее удобного способа записи чисел для простого и быстрого решения логических задач. Исследование основных свойств системы счисления. Особенность использования упорядоченного набора символов. Суть применения двоичной концепции.

    лекция, добавлен 06.08.2017

  • Постановка, стандартные формы записи задачи линейного программирования, способы их решения. Основные понятия и определения теории графов, сетевая модель как графическая модель комплекса работ. Математическая формализация и алгоритмизация игровых задач.

    курсовая работа, добавлен 11.06.2013

  • Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.

    курсовая работа, добавлен 10.07.2012

  • Определение и примеры выпуклых множеств, гиперплоскости, нормального вектора. Рассмотрение операций, сохраняющих выпуклость. Понятие выпуклой функции. Установление необходимого и достаточного условий минимума гладких функций на выпуклых множествах.

    лекция, добавлен 06.09.2017

  • Задачи вычисления неопределенного и определенного интегралов от функций одной переменной. Дифференциальные уравнения первого и высших порядков. Формирование умения использовать методы математики для решения профессиональных задач. Примеры решения задач.

    учебное пособие, добавлен 19.11.2015

  • Основные задачи теории нелинейных систем, методы расчета их устойчивости. Анализ теории устойчивости движения. Изучение реальных характеристик автоматических устройств, выделение типичных нелинейностей. Понятие устойчивости невозмущенного движения.

    реферат, добавлен 17.02.2016

  • Управление интеллектуальным мобильным роботом в неструктурированной среде. Математический аппарат нечетких множеств: типовые формы кривых для задания функций принадлежности, примеры: треугольная, трапецеидальная и гауссова функции принадлежности.

    контрольная работа, добавлен 28.05.2013

  • Определение и условия существования определенного интеграла. Проведение исследования основных понятий и предложений теории пределов. Характеристика формулы Ньютона-Лейбница. Выражение остаточного члена теоремы Тейлора с помощью определенной величины.

    курсовая работа, добавлен 17.12.2017

  • Операции над элементарными событиями. Вычисление вероятностей на основе классического, статистического и геометрического подхода. Теорема возможности несовместных событий. Числовые характеристики случайных величин. Методы точечных и интервальных оценок.

    учебное пособие, добавлен 15.01.2014

  • Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.

    курсовая работа, добавлен 07.07.2012

  • Изложение основ классической теории сводимости задач и геометрического подхода к изучению их сложности. Изучение комбинаторно-геометрических свойств задач и геометрической интерпретации алгоритмов. Исследование свойств конусного разбиения пространства.

    диссертация, добавлен 28.12.2013

  • Исторические сведения о зарождении уравнения. Первоначальное значение термина алгебра. Зарождение искусства решения уравнений. Значительный вклад в развитие языка алгебры Ф. Виета. Усовершенствование теории уравнений с применением изобретенных символов.

    контрольная работа, добавлен 29.01.2012

  • Определения, обозначения и конкретные случаи размеченных областей. Примеры ориентированных размеченных областей, построенных с применением гармонических функций. Линейное сингулярно возмущенное обыкновенное дифференциальное уравнение первого порядка.

    статья, добавлен 11.11.2018

  • История появления теории графов. Первое знакомство с графами, математическое понятие и определение. Набор функций, определяющий степени вершин. Циклы и пути в графе. Варианты решения различных их разновидностей. Сферы, области использования теории графов.

    курсовая работа, добавлен 29.01.2010

  • Исследование процесса кратного интегрирования при дифференциальном исчислении функций. Определение частных производных функций двух переменных и установление их геометрического смысла. Анализ правил дифференцирования и табличных производных функции.

    курсовая работа, добавлен 26.05.2015

  • Методика постановки математических задач для поиска оптимального решения. Специфика использования геометрического и динамического программирования для решения заданий оптимизации многостадийных процессов. Принципы построения многоугольника решений.

    реферат, добавлен 22.01.2014

  • Позиционная система счисления как система, у которой количественные значения символов, используемых для записи чисел, зависят от их положения в коде числа. История возникновения идеи приписывать цифрам разные величины. Вавилонская и десятичная системы.

    доклад, добавлен 08.12.2014

  • Изложение теории ошибок и методов обработки непосредственно случайных погрешностей: задача теории ошибок, классификация и типы; вероятность случайной величины; распределение Гаусса для бесконечного числа случайных измерений; доверительная вероятность.

    курсовая работа, добавлен 07.06.2014

  • Анализ содержания предположений, которые легли в основу теории случайных ошибок. Сравнительная характеристика генеральной и выборочной совокупности измерений. Определение минимального количества измерений. Методика определения коэффициента Кохрена.

    лекция, добавлен 26.09.2017

  • Рассмотрение содержания арифметической теории квадратичных форм. Изучение основ теории билинейных и квадратичных форм. Линейные операции над векторами евклидова пространства. Неравенство Коши-Буняковского. Основные свойства квадратической формы.

    реферат, добавлен 31.12.2020

  • Исследование сущности и содержания теории систем, системного подхода и анализа, которые составляют важнейшее достижение методологии ХХ ст. История возникновения системных идей, понятия теории систем, технология и главные этапы проведения анализа.

    учебное пособие, добавлен 05.09.2013

  • Понятие гиперболы как геометрического места точек разности расстояний. Процесс построения канонического уравнения. Характеристика главных свойств гиперболы. Понятие параболы как геометрического места точек плоскости равноудаленных от фиксированной точки.

    лекция, добавлен 23.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.