Математическая логика или Булева алгебра

Система мышления, создающая взаимосвязи между заданными условиями и позволяющая делать умозаключения, основываясь на предпосылках и предположениях. Принципы построения математических теорий. Использование алгебры высказываний в современной информатике.

Подобные документы

  • Определение понятия системы аксиом алгебры октав; ее непротиворечивость и категоричность. Изучение понятия и свойств сопряженных октав. Рассмотрение основных тождеств, применяемых к октавам. Формулирование и доказательство теорем Гурвица и Фробениуса.

    дипломная работа, добавлен 05.05.2012

  • Рассмотрение применения математических методов в разных сферах человеческой деятельности. Описание зарождения математики и построения первых математических теорий. Анализ состояния науки в разные исторические периоды и вклада разных ученых в ее развитие.

    реферат, добавлен 25.09.2016

  • Исследование вопросов линейной алгебры и физики для активного и неформального усвоения: основные понятия и теоремы, формулы, решение практических задач, упражнения для самостоятельной работы, для решения на практических занятиях и для домашних заданий.

    краткое изложение, добавлен 25.03.2011

  • Анализ определений внутренних и внешних устойчивых множеств на графе с определением его ядра. Обзор построения нелокальных правил коллективных решений. Нахождение значений векторов турнирной матрицы, методом индивидуальных порядков линейной алгебры.

    лекция, добавлен 29.09.2013

  • Сущность и значение предикатов, отношений. Определение кванторов, их виды и взаимосвязи. Построение исчисления предикатов. Специфика логического следования, выводимость и доказуемость. Категорический силлогизм и другие умозаключения дедуктивной логики.

    курсовая работа, добавлен 08.02.2011

  • Процесс обоснования принятия принципа рефлексии в теории истины. Использование автономной прогрессии в случае выявления имплицитных допущений при принятии математической теории. Концепций истины и имплицитных допущений принятия математических теорий.

    статья, добавлен 25.09.2020

  • Выполнение громоздких выкладок с формулами на компьютере (компьютерная алгебра) как одна из первых попыток моделирования интеллектуальной деятельности. Характеристика этапов и проблем развития и использования компьютерной алгебры в задачах механики.

    статья, добавлен 28.10.2018

  • Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.

    лекция, добавлен 26.01.2014

  • Представление синусоидального тока комплексными величинами. Матричная алгебра, предмет и содержание ее исследований, современные тенденции и достижения. Понятие и характерные свойства матрицы размера. Вычисление обратных матриц различными способами.

    реферат, добавлен 15.06.2013

  • Основы реляционной алгебры, её операции и замкнутость. Реляционные операторы и специальные реляционные операции. Выражение реляционного исчисления кортежей и реляционные исчисления с переменными на доменах. Элементы синтаксиса QUEL и языка предикатов.

    реферат, добавлен 25.12.2015

  • Анализ понятия символической логики (математической, теоретической): происхождение, развитие и свойства. Буквенные обозначения для переменных, а также идея построения универсального языка для всей математики. Основы современной логической символики.

    доклад, добавлен 27.12.2010

  • Элементы линейной алгебры, векторного анализа и аналитической геометрии. Определение значения матричного многочлена. Разложение элемента по рядам, сведение к треугольному виду. Матричное уравнение. Исследование системы на совместность методом Гаусса.

    учебное пособие, добавлен 12.05.2014

  • Определение и направления исследования алгебры путей на связных графах. Описание их свойств и центральных элементов тел, частных для случая, когда граф является полным неориентированным графом без петель. Формулирование теорем и их доказательство.

    статья, добавлен 31.05.2013

  • Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.

    курсовая работа, добавлен 25.01.2017

  • Области применения равносильных преобразований алгоритмов. Схемы представления алгоритмов и алгебра событий. Соответствие событий переходам в инверсном графе. Способы регулярного выражения алгоритма. Определение последующих степеней символьных матриц.

    статья, добавлен 08.12.2018

  • Способы деления многочленов. Основная теорема алгебры комплексных чисел. Особенности попарного выделения сопряженных корней. Правила представления неправильных дробей. Использование метода неопределенных коэффициентов. Разложение функций на множители.

    лекция, добавлен 09.07.2015

  • Основы линейной и векторной алгебры. Пределы и непрерывность. Дифференциальное исчисление функций с одной и несколькими переменными. Зависимость производной от направления. Аналитическая геометрия и комплексные числа. Тригонометрическая форма записи.

    курс лекций, добавлен 09.10.2013

  • Развитие формально-аксиологической интерпретации учения Парменида и Мелисса о небытии небытия, множества и движения. Двузначная математическая модель формально-аксиологического аспекта метафизики: двузначная алгебра метафизики как формальная аксиология.

    статья, добавлен 24.11.2018

  • Характеристика особенностей использования математических задач в процессе обучения для развития наглядно-образного мышления, творческих способностей и исследовательских навыков учащихся. Описание математических задач исследовательского характера.

    статья, добавлен 18.11.2020

  • Описание логической системы, в которой множеством истинности является множество самосопряженных положительных операторов в гильбертовом пространстве. Определение операторозначной логической алгебры и некоторые ее свойства, особенности применения.

    статья, добавлен 27.02.2019

  • Анализ фундаментальных проблем в направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Построение примеров йордановых супералгебр над произвольным полем. Арифметическое описание спектров.

    научная работа, добавлен 28.10.2018

  • Аналитическая геометрия. Основные положения линейной алгебры. Использование систем линейных уравнений при решении экономических задач. Функции и теоремы математического анализа. Основные методы интегрирования. Дифференциальные и разностные уравнения.

    учебное пособие, добавлен 12.03.2013

  • Рассмотрение вопросов истории и применения математических методов в психологии. Выявление использования математических методов в психологии, их роли и взаимосвязи между собой. Осуществление количественной и качественной оценки психологических явлений.

    статья, добавлен 01.03.2019

  • Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Понятие функции, способы её задания и исследования. Изображение замкнутых кривых на координатной плоскости. Методика изучения линейной, квадратной и кубической функции.

    методичка, добавлен 30.01.2016

  • Основной научный путь Э. Неттер – создание общей, абстрактной алгебры. Установление связи между янфинитезимальными симметриями и законами сохранения для соответствующей системы уравнений Эйлера-Лагранжа. Изучение сущности закона сохранения энергии.

    презентация, добавлен 15.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.