Линейная парная регрессия
Определение зависимости одной физической величины от другой. Метод линейной парной регрессии как наилучший способ для воспроизведения искомой зависимости и решение задач по имеющимся экспериментальным точкам с помощью программного обеспечения Mathcad.
Подобные документы
Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.
краткое изложение, добавлен 22.05.2010F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Особенность функциональной зависимости одной величины от другой. Характеристика аналитического, табличного и графического способов задания функций. Главный анализ многозначных, обратных и сложных переменных величин. Основная сущность построения графиков.
лекция, добавлен 12.07.2015Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.
контрольная работа, добавлен 12.01.2015Изучение математических законов теории вероятностей. 3адача определения закона распределения случайной величины по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Выборочная линейная регрессия.
курсовая работа, добавлен 18.10.2017Общая характеристика графика модели парной регрессии. Знакомство с наиболее важными этапами расчета коэффициента детерминации. Рассмотрение основных способов построения степенной модели парной регрессии. Особенности проведения корреляционного анализа.
статья, добавлен 27.12.2020Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
курсовая работа, добавлен 12.12.2014Рассмотрение инструментов, применяемых для решения задач линейной алгебры с помощью MathCad. Определение значения матричного выражения. Определение матричного выражения в буквенном виде и запись его значения. Умножение матрицы на единичную матрицу.
практическая работа, добавлен 31.10.2019Анализ динамики роста стоимости основных рабочих фондов. Расчёт парного коэффициента корреляции. Проверка значимости с помощью статистики Стьюдента. Вычисление оценки неизвестных параметров уравнения парной регрессии по методу наименьших квадратов.
контрольная работа, добавлен 15.03.2017Уравнение парной регрессии. Система нормальных уравнений. Параметры уравнения регрессии. Показатель тесноты связи. Коэффициент эластичности. Ошибка аппроксимации и индекс корреляции. Поиск тесноты связи с помощью множественного коэффициента корреляции.
контрольная работа, добавлен 29.12.2011Рассмотрение метода взвешенных наименьших квадратов. Исследование случая парной регрессии. Нарушение гомоскедастичности и наличие автокорреляции остатков. Уравнение регрессии без свободного члена. Дисперсия результативного признака и остаточных величин.
презентация, добавлен 13.07.2015Расчет числовых характеристик выборочного распределения. Построение вариационного ряда и расчёты с использование электронных таблиц. Задача практического применения дисперсного анализа, парной линейной и нелинейной, а так же множественной регрессии.
контрольная работа, добавлен 11.04.2016Классификация задач нелинейного программирования и методы их решения. Графический метод решения задач нелинейного программирования для функций двух переменных. Решение задач нелинейного программирования методом Лагранжа и в программной среде Mathcad.
курсовая работа, добавлен 13.10.2016Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.
курсовая работа, добавлен 19.06.2015Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.
курс лекций, добавлен 27.10.2015Использование программного обеспечения для построения графиков при решении математических задач. Определение функции на заданном отрезке с помощью Мастера построения графиков. Особенности их форматирования. Определение положительного корня уравнения.
контрольная работа, добавлен 07.10.2016Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.
курсовая работа, добавлен 13.10.2017Сущность и история разработки метода наименьших квадратов. Примеры решения уравнений в матричном виде по способу наименьших квадратов. Свойства оценок на основе метода наименьших квадратов. Парная линейная и нелинейная регрессия, методы их оценивания.
реферат, добавлен 26.04.2015Особенности исследования нелинейной функции одной переменной. Рассмотрение основных операций с матрицами. Решение системы линейных уравнений. Изучение приближения таблично заданной функции. Способы определения экстремума функции двух переменных.
курсовая работа, добавлен 19.05.2015Сущность и содержание метода наименьших квадратов, свойства оценок на его основе. Парная линейная регрессия. Системы одновременных уравнений, направления ее исследования и порядок решения. Авторегрессионное преобразование. Применение МНК в экономике.
курсовая работа, добавлен 15.05.2013Решение задач по линейной алгебре, тензорному исчислению, системам дифференциальных уравнений и теории устойчивости. Линейная зависимость векторов. Сумма и перечисление подространств. Ортогонализация по Граму-Шмидту. Матрица сопряженного оператора.
учебное пособие, добавлен 03.10.2012Ознакомление с математической постановкой задачи регрессии. Исследование и характеристика одномерной полиномиальной регрессии с произвольной степенью полинома и с произвольными координатами отсчетов. Рассмотрение особенностей синусоидальной регрессии.
реферат, добавлен 08.02.2018Определение параметров для составления линейного уравнения парной регрессии посредствам построения электронной таблицы Excel. Оценка качества построенной модели на основе коэффициента парной корреляции, детерминации и средней ошибки аппроксимации.
лабораторная работа, добавлен 30.03.2015Вероятность качественного изготовления изделий. Распределение дискретной случайной величины. Математическое ожидание и среднее квадратичное отклонение. Рассмотрение закона распределения вероятности. Уравнение линейной среднеквадратической регрессии.
контрольная работа, добавлен 31.10.2015Статистическое описание и выборочные характеристики двумерного случайного вектора. Построение диаграммы рассеяния. Однофакторный дисперсионный анализ. Определение линейного контраста и выборочной линейной регрессии. Расчет границ доверительного интервала.
контрольная работа, добавлен 16.10.2017