Наглядная топология

Признаки деформации эластичных тел. Процесс заклеивания узлов и зацеплений. Проектировка векторных полей на плоскости и двухмерных поверхностях. Рассмотрение гомоморфизма без неподвижных точек. Ознакомление со свойствами двухмерных поверхностей.

Подобные документы

  • Характеристика интегральных поверхностей первого и второго рода. Определение и вычисление поверхностного интеграла. Основной подсчет статических моментов плоскости относительно координатных плоскостей. Выражение через параметры подинтегральной функции.

    статья, добавлен 12.06.2016

  • Рассмотрение физических примеров скалярных полей. Нахождение и изображение линии и поверхности уровня скалярных полей. Изучение понятия вектор-градиент скалярного поля. Рассмотрение физического смысла потока векторного поля. Циркуляция векторного поля.

    презентация, добавлен 27.06.2015

  • Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.

    презентация, добавлен 26.01.2014

  • Алгоритм построения массива точек, поставленных в соответствие точкам отсека поверхности. Формулы расчета для координат точек. Определение возможных случаев расположения угловых точек массива. Моделирование акустических, оптических и других процессов.

    статья, добавлен 11.01.2018

  • Геометрические и аффинные преобразования на плоскости. Применение однородных координат для матричной формы записи уравнений аффинных преобразований. Свойства и способы задания аффинного преобразования плоскости, которые переводят прямую в прямую.

    реферат, добавлен 08.04.2020

  • Построение линии пересечения двух поверхностей в частном и в общем случаях. Характеристика особого случая построения линии пересечения двух поверхностей. Особенности процесса построения линии пересечения поверхностей способом секущих плоскостей.

    лекция, добавлен 02.04.2019

  • Правила начертания и основные назначения линий на чертежах всех отраслей промышленности. Способы преобразования проекций. Расчет расстояния от точки до плоскости. Построение линии пересечения плоскостей. Взаимное пересечение поверхностей вращения.

    методичка, добавлен 23.09.2011

  • Изучение свойств элементарных функций. Ознакомление с основными правилами построения графиков линейных, квадратичных и логарифмических функций. Рассмотрение деформации и преобразования графиков с параллельным переносом. Описание математических примеров.

    лекция, добавлен 22.11.2013

  • Изучение основных способов задания прямой на плоскости и в пространстве. Взаимное расположение прямых в пространстве: параллельные, пересекающиеся и скрещивающиеся. Взаимное расположение прямой и плоскости: параллельна, лежит в плоскости и ее пересекает.

    курсовая работа, добавлен 01.12.2017

  • Обозначение множества точек на отрезке прямой плоскости. Характеристика коллинеарных векторов расположенных на одной либо на параллельных прямых. Анализ правил сложения на примере треугольника и параллелограмма. Обзор проекции произведения слагаемых.

    лекция, добавлен 29.09.2013

  • Понятие векторной функции. Особенности нахождения предела непрерывности, производной и интеграла вектор-функции. Использование векторных функций в криволинейной системе координат. Характеристика приложения векторных функций в скалярном и векторном поле.

    курсовая работа, добавлен 12.01.2021

  • Понятие параллельных плоскостей. Невозможные структуры де Мея. Параллельность в природе. Использование математических теорем при доказательстве геометрического признака. Параллельность боковых сторон трапеции. Наличие общих точек у прямой и плоскости.

    презентация, добавлен 09.02.2014

  • Исследование методов вычисления индекса нулевой изолированной особой точки плоского векторного поля. Описание подхода, помогающего свести полиномиальные векторные поля к векторным полям с известным индексом нуля через гомотопические преобразования.

    статья, добавлен 26.04.2019

  • Квазискалярное произведение двух точек на проективной плоскости. Общий вид формулы Эйлера. Пример телепортации прямой из гиперболической геометрии в эллиптическую. Внутренняя и наружная область окружности на сфере. Части тора, особенности геометрии.

    статья, добавлен 03.05.2012

  • Понятия общей топологии. Многообразия и касательные вектора. Тензоры: первые определения и свойства. Обычное частное дифференцирование. Сравнение касательных векторов в разных точках. Интегрирование дифференциальных форм. Расчет ковариантной производной.

    курс лекций, добавлен 02.05.2014

  • Введение геометрического объекта в систему отсчета. Использование метода секущих плоскостей и вспомогательных сфер. Построение проекции объекта, стоящего на плоскости. Геометрические свойства равнобедренного треугольника. Натуральная величина высоты.

    учебное пособие, добавлен 27.08.2017

  • Понятие движения плоскости и осевой симметрии. Особенности параллельного переноса, описание процесса. Характеристика и основные принципы осевой и центральной симметрии. Сущность параллельного переноса на вектор и поворота плоскости вокруг точки.

    презентация, добавлен 16.03.2012

  • Понятие планиметрии как раздела геометрии, изучающего фигуры на плоскости. Понятие аксиомы принадлежности, расположения, измерения, откладывания, параллельности фигур, точек, прямых, трапеций, окружности, параллелограмма, их краткая характеристика.

    презентация, добавлен 29.04.2015

  • Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.

    лекция, добавлен 21.09.2017

  • Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.

    контрольная работа, добавлен 17.06.2014

  • Характеристика основного тригонометрического тождества. Нахождение значений выражений, содержащих синусы, косинусы, тангенсы и котангенсы различных чисел. Числовая окружность на координатной плоскости. Определение координат точек числовой окружности.

    разработка урока, добавлен 16.11.2012

  • Оценка геометрических образов (прямые линии, кривые линии, плоскости, поверхности) с помощью многомерности параметров точечно-эпюрных номограмм. Закономерности, применяемые в начертательной геометрии. Аргументальные оси четвёртой октанты. Проекции точек.

    статья, добавлен 30.04.2018

  • Параметризация поверхностей с помощью внутренних криволинейных координат. Первая и вторая квадратичные формы поверхности, средняя и гауссова кривизна. Вычисление характерных величин для простых поверхностей: сферы, цилиндра, конуса и геликоида.

    курсовая работа, добавлен 30.01.2019

  • Фундаментальные понятия геометрии. Прямая в пространстве как линия пересечения двух плоскостей. Направляющий вектор в каноническом уравнении. Угол между прямой и проекцией. Взаимное расположение точек на плоскости. Определение пересекающих по формуле.

    презентация, добавлен 10.11.2014

  • Понятие алгебраической кривой второго порядка. Окружность – множество, состоящее из всех точек плоскости, находящихся на равном расстоянии от фиксированной точки. Определение окружности для вывода ее уравнения. Фокусы эллипса и эксцентриситет эллипса.

    контрольная работа, добавлен 09.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.